Erythropoietin
Template:Abbrev Erythropoietin (Epo) is a hormone produced by the kidneys in response to hypoxia, and is also a prescription drug used for treating anemia. It is essential for normal development and maturation of red blood cells (RBC), and abnormally high levels of either the endogenous or drug form can lead to dangerously high hematocrit values.
History
Carnot and DeFlandre [1] made initial observations in rabbits that suggested the existence of a factor in peripheral blood that could stimulate production of reticulocytes. Their experiment involved bleeding a rabbit to induce accelerated RBC production, they then transferred some of the plasma to a recipient animal. The key observation of increased reticulocytes in the recipient animal prompted the search for a substance, which they named hemopoietin, that regulated the rate of RBC production.
A major breakthrough came in 1977, when small amounts of erythropoietin were purified from the urine of patients with aplastic anemia.[2] Amino acid sequence data from this protein were used in subsequent efforts to clone the gene for erythropoietin in 1983.[3] The gene was then inserted into a suitable mammalian cell line, Chinese hamster ovary cells, allowing large-scale manufactureof the protein as a commercial product. It was approved for use in 1991. About $10B was spent worldwide in 2006 for treatment of patients with rHuEpo, with about $2B for the cost of treating Medicare patients on dialysis.[4]
Available forms
Erythropoietin exists in several forms and goes by several names. The endogenous form is also referred to as 'epoetin alfa' and sometimes spelled as 'erythropoetin'; it can be abbreviated to EPO, Epo, or EP. Various synthetic forms of recombinant (r) human (h) Epo are available, collectively referred to as rHuEpo or rhEpo. These include:
- Procrit, the trade name of epoetin alfa marketed in the US by Ortho Biotech Products, L.P., a member of the Johnson & Johnson Family of Companies. It is approved for treatment of chemotherapy-related anemia in patients with most types of cancer; for the treatment of anemia in chronic kidney disease patients who are not on dialysis; for treatment of anemia related to zidovudine treatment in HIV patients; and for reducing the need for transfusions in patients undergoing some types surgery who are anemic or at significant risk for blood loss.
- Eprex, the trade name of epoetin alfa marketed outside the US by Ortho Biotech Products, L.P., a member of the Johnson & Johnson Family of Companies.
- Epogen, the trade name of epoetin alfa made and marketed by Amgen in the US for treatment of anemia in patients with chronic renal failure on dialysis.
- NeoRecormon, the trade name of epoetin beta marketed by Roche in Europe for treatment of anemia in patients with chronic renal failure and for treatment of anemia in people with solid tumours who are receiving platinum-based chemotherapy. Even though epoetin alfa and epoetin beta are both synthesized in Chinese hamster ovary cells, they differ in their erythropoietin isoform compositions and biological properties.[5]
- Aranesp, the trade name of darbepoetin alfa, a hyperglycosylated mutant form of Epo produced and marketed by Amgen for treating anemia associated with chronic renal failure (CRF), including patients on dialysis and patients not on dialysis, and for treating anemia in patients with nonmyeloid malignancies where anemia is due to the effect of concomitantly administered chemotherapy.
Structure
Epo is a glycoprotein with a molecular mass of 30.4 kD. Its structure includes a 165-amino acid backbone with three N-linked carbohydrates attached to asparagines at amino acid positions 24, 38, and 83 and one O-linked carbohydrate attached to Ser126 .[6] The carbohydrate residues allow for many possible isoforms and contribute to the stability of the hormone in vivo. Darbepoetin (see above) was created through site-directed mutation of two amino acid residues, allowing for two additional N-linked carbohydrate chains.
Production
Epo is produced by peritubular cells in the adult kidney, and in hepatocytes in the fetus. In adults, a small amount is also produced by the liver. The rate of Epo synthesis and secretion depends on local oxygen concentrations; hypoxia is the main stimulus for Epo production. The serum concentration of Epo in adults is normally 4-27 mU/mL. In adults with non-renal anemias, the serum concentration tends to increase with the severity of the anemia.
Actions
Epo's activities depend on successful interaction with its receptor, which is prominent on the surface of developing RBC in the bone marrow. Epo signaling acts to prevent or retard apoptosis, i.e., it acts as a survival factor for developing cells. The increase in RBC mass brought about by Epo stimulation of the bone marrow completes a self-regulating feedback loop, since (other things being equal), the increased RBC mass would lessen the hypoxia experienced by the kidney and thus, lessen Epo production.
Uses
Blood doping
Erythropoietin is sometimes used by nonanemic athletes to increase their body's oxygen-carrying capacity and thus gain an unfair advantage in competition. Besides the risk of disqualification for cheating, athletes who participate in this illicit use of erythropoietin risk the complications of abnormally high red blood cell concentrations, which include abnormal blood clotting. Detection of illicit erythropoietin use is challenging because endogenous and exogenous (pharmaceutical) erythropoietin are almost identical. Several tests rely on altered patterns of glycosylation of erythropoietin molecules shed in the urine. Other detection methods rely on altered parameters of red blood cell production such as hematocrit, reticulocyte hematocrit, the proportion of abnormally large red blood cell, the serum erythropoietin level, and the soluble transferrin receptor concentration.[7]
Anemia in critically ill patients
Although the use of erythropoietin has been studied in critically ill patients, erythropoietin should not be used in this setting.
In a randomized controlled trial, erythropoietin reduced insignificantly reduced mortality among critically ill patients. If larger studies find the same result to be statistically significant, 35 patients would need treatment to prevent one death (number needed to treat is 35).[8] Although the editorial accompanying the trial concluded this benefit was insufficient, less patients would require this treatment to save one life than the number of patients treated with other commonly accepted interventions (such as primary prevention of coronary artery disease in patients with hypertriglyceridemia. If the benefit proves real, it must be weighed against the 5% absolute increase in thrombosis found in the study.
A meta-analysis that included this trial does "not recommend the routine use of erythropoietin-receptor agonists in critically ill patients".[9]
Other applications
Erythropoietin's activity in the bone marrow to increase red cell production hinges on its ability to inhibit apoptosis. Experimental treatment of diseases in which apoptosis is prominent have yielded promising initial results. For example, erythropoietin has been proposed as being both safe and beneficial in acute stroke.[10]
Adverse effects
Erythropoietin is associated with an increased risk of adverse cardiovascular complications in patients with kidney disease if it is used to increase hemoglobin levels above 13.0 g/dl.[11]
Safety advisories in anemic cancer patients
The FDA released an advisory[12] on March 9, 2007, and a clinical alert[13] on February 16, 2007, about the use of erythropoeisis-stimulating agents. The advisory noted these drugs had a "higher chance of serious and life-threatening side effects and/or death...and had a higher rate of deep venous thrombosis".
References
- ↑ Carnot P, DeFlandre C (1906) "Sur l’activité hématopoiétique des différents organes au cours de la r´g´n´ration du sang". C R Acad Sci Paris 143:432–5
- ↑ Miyake T et al. (1977) "Purification of human erythropoietin". J Biol Chem 252:5558-64
- ↑ Lin FK, et al. (1985) "Cloning and expression of the human erythropoietin gene". PNAS 82: 7580-4
- ↑ Smith M. (2007) "Aggressive anemia treatment increases mortality". MedPage Today, February 2
- ↑ Storring PL et al. (1998) Epoetin alfa and beta differ in their erythropoietin isoform compositions and biological properties. Br J Haematol 100:79-89
- ↑ Browne JK et al. (1986)Erythropoietin: gene cloning, protein structure, and biological properties. Cold Spring Harb Symp Quant Biol. 51:693-702
- ↑ Parisotto R, Wu M, Ashenden MJ, et al (2001). "Detection of recombinant human erythropoietin abuse in athletes utilizing markers of altered erythropoiesis". Haematologica 86 (2): 128–37. PMID 11224480. [e]
- ↑ Corwin HL, Gettinger A, Fabian TC, et al (2007). "Efficacy and safety of epoetin alfa in critically ill patients". N. Engl. J. Med. 357 (10): 965–76. DOI:10.1056/NEJMoa071533. PMID 17804841. Research Blogging.
- ↑ Zarychanski R, Turgeon AF, McIntyre L, Fergusson DA (2007). "Erythropoietin-receptor agonists in critically ill patients: a meta-analysis of randomized controlled trials". CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne 177 (7): 725–34. DOI:10.1503/cmaj.071055. PMID 17823140. Research Blogging.
- ↑ Ehrenreich H, Hasselblatt M, Dembowski C, et al (2002). "Erythropoietin therapy for acute stroke is both safe and beneficial". Mol. Med. 8 (8): 495–505. PMID 12435860. [e]
- ↑ Drüeke TB, Locatelli F, Clyne N, Eckardt KU, Macdougall IC, Tsakiris D, Burger HU, Scherhag A (2006). "Normalization of hemoglobin level in patients with chronic kidney disease and anemia". N. Engl. J. Med. 355 (20): 2071-84. DOI:10.1056/NEJMoa062276. PMID 17108342. Research Blogging.
- ↑ FDA Public Health Advisory: Erythropoiesis-Stimulating Agents (ESAs): Epoetin alfa (marketed as Procrit, Epogen), Darbepoetin alfa (marketed as Aranesp). Retrieved on 2007-06-05.
- ↑ Information for Healthcare Professionals: Erythropoiesis Stimulating Agents (ESA). Retrieved on 2007-06-05.