Revision as of 13:55, 11 December 2008 by imported>Richard Pinch
In algebra, a cyclotomic polynomial is a polynomial whose roots are a set of primitive roots of unity. The n-th cyclotomic polynomial, denoted by Φn has integer cofficients.
For a positive integer n, let ζ be a primitive n-th root of unity: then
![{\displaystyle \Phi _{n}(X)=\prod _{(i,n)=1}\left(X-\zeta ^{i}\right).\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8fa7fa064f24426227c138c7c8f7b05644bae736)
The degree of
is given by the Euler totient function
.
Since any n-th root of unity is a primitive d-th root of unity for some factor d of n, we have
![{\displaystyle X^{n}-1=\prod _{d|n}\Phi _{d}(X).\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2da28a80aa35b7fb7970cb909e0795bc6387d64e)
By the Möbius inversion formula we have
![{\displaystyle \Phi _{n}(X)=\prod _{d|n}(X^{d}-1)^{\mu (n/d)},\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/60c3f176abb0e205200b54f71d657f5db4fff202)
where μ is the Möbius function.
Examples
![{\displaystyle \Phi _{1}(X)=X-1;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/203dd158f6791af048e90dae39ef502e2e83ba3e)
![{\displaystyle \Phi _{2}(X)=X+1;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6f12bfce15a0418a591b9bd5dee62df1e117b986)
![{\displaystyle \Phi _{3}(X)=X^{2}+X+1;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e7fe3910d9c7aff37fe26a9105b4e5794b49439)
![{\displaystyle \Phi _{4}(X)=X^{2}+1;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/af18cd4808881e5d09388f3016d08ca25d49bd49)
![{\displaystyle \Phi _{5}(X)=X^{4}+X^{3}+X^{2}+X+1;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9fe0019302777727e5aeb7a386923f89c0056ee7)
![{\displaystyle \Phi _{6}(X)=X^{2}-X+1;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c7b173e98b8c2a74303b53d507bf634d46e26814)
![{\displaystyle \Phi _{7}(X)=X^{6}+X^{5}+X^{4}+X^{3}+X^{2}+X+1;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/55e1fcb6790f5bc809cb6e265b2ff2522e78bf1d)
![{\displaystyle \Phi _{8}(X)=X^{4}+1;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6eefabd0a39a0d6548f3fc74cec599b6d0ec0a6)
![{\displaystyle \Phi _{9}(X)=X^{6}+X^{3}+1;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2b6515d1dea10ff81f19b71fe79018ee2c64e6b2)
![{\displaystyle \Phi _{10}(X)=X^{4}-X^{3}+X^{2}-X+1.;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0859c409b809c1ccab33dcc6bdf4b2c2d654543e)