Exercise and body weight
This page was started in the framework of an Eduzendium course and needs to be assessed for quality. If this is done, this {{EZnotice}} can be removed.
A brief overview of your interest group (be sure to put its name in bold in the first sentence) and the scope of the article goes here.[1]
The following list of sections should serve as a loose guideline for developing the body of your article. The works cited in references 2-5 are all fake; their purpose is to serve as a formatting model for your own citations.
Title of Part 1
Title of Subpart 1
In here you could write about various informations linked to various references for example from journals. [2] [3]
Maintenance of Long-Term Weight Loss
It has been shown in many studies that following weight loss, subjects often regain the lost weight, and sometimes even overshoot their original weight. Abderson et al , having analysed a large number and variety of weight loss studies carried out in the US that more than 35% of lost weight is regained within the first year, and the majority within five.(1) Metabolism plays a key role in this. Among other inputs, the reduction of leptin and insulin tell the brain that the body is energy-deficient, resulting in a drive to eat along with suppressed energy expenditure. The body’s choice of fuel also changes within the diurnal cycle and is affected by lifestyle. Therefore, to maintain their new weight, individuals need to limit their food intake to the same extent that expenditure is suppressed.
The role of exercise in this:
There is evidence to suggest that regular exercise prevents or counters these metabolic adaptations that lead to weight regain. Work done by MacLean et al (2) showed that not only that relapsing rats that exercised presented a reduction in weight in liver tissue and mesenteric fat pads compared to their sedentary counterparts, but did not succumb to the overeating normally seen after dramatic weight loss. The energy balance previously mentioned was delayed and much reduced (roughly 40%), therefore greatly reducing the rats’ desire to gorge themselves. Lean rats show a diurnal shift in fuel usage (favouring carbohydrates during the dark cycle and fat during the light). Obese rats did not present this shift. It however returned after weight loss. (see if can find more on this) In sedentary rats, carbohydrates were favoured regardless, while fat was stored and significant lipogenesis was observed.
AMPK is a hypothalamic nutrient sensor that responds to low nutrient availability. Signals from the periphery (leptin, insulin) were not increased by exercise regimes. The reception of these signals, however, seems to be more involved. Acute bouts of exercise have been shown in the study by MacLean et al to lessen the response of AMPK to peripheral deprivation signals, thereby reducing the drive to overfeed. Rats that had lost weight were observed to alternate massive overeating with periods of deprivation. Daily aerobic exercise reduced the extremes in fuel consumption that are associated with this phenomenon as well as the excessive desire to eat and/or hunger pains that are the downfall of many individuals after a calorie-restricted weight loss program.
The work done by MacLean et al suggested that preventing the typical increase in adipocytes may affect the ability to store excess calories, as the peripheries are wired so as to process and store any fuel excess rapidly and efficiently to promote regain and return to the defended body weight. The drive to physical activity is tightly regulated and has been shown to directly influence adiposity and body weight.
Title of Part 2
You can also cite published work accessible online. [4]
Title of Part 3
You can also cite published work from books. [5]
References
- ↑ See the "Writing an Encyclopedia Article" handout for more details.
- ↑ First Author and Second Author, "The perfect reference for Subpart 1," Fake Journal of Neuroendocrinology 36:2 (2015) pp. 36-52.
- ↑ First Author and Second Author, "Another perfect reference for Subpart 1," Fake Journal of Neuroendocrinology 25:2 (2009) pp. 62-99.
- ↑ "Part 2," Appetite and obesity. 2006. Retrieved July 21, 2009 from http://www.appetiteandobesity.org/part2.html
- ↑ Authors names, "The perfect review for part 3," Publishers City (2009)