Revision as of 13:36, 19 December 2008 by imported>Richard Pinch
In mathematics, the error function is a function associated with the cumulative distribution function of the normal distribution.
The definition is
![{\displaystyle \operatorname {erf} (x)={\frac {2}{\sqrt {\pi }}}\int _{0}^{x}\exp(-t^{2})dt.\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5629952e6d1e53a36aeee784dd0332fb7dc3939f)
The probability that a normally distributed random variable X with mean μ and variance σ2 exceeds x is
![{\displaystyle F(x;\mu ,\sigma )={\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {x-\mu }{\sigma {\sqrt {2}}}}\right)\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/df6f63a0a3433d305d9e626f9a8e03c67bd1536a)