Revision as of 04:35, 10 January 2010 by imported>Peter Schmitt
A geometric series is a series associated with an infinite geometric sequence,
i.e., the quotient q of two consecutive terms is the same for each pair.
A geometric series converges if and only if |q|<1.
Then its sum is
where a is the first term of the series.
Example
The series
![{\displaystyle 6+2+{\frac {2}{3}}+{\frac {2}{9}}+{\frac {2}{27}}+\cdots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/1ceda4e436ee09926f60215fa847b09bcce1dd7c)
is a geometric series with quotient
![{\displaystyle q={\frac {1}{3}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/982967a0c09d5b5c01287384000d505032b9e474)
and first term
![{\displaystyle a=6}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eeb6cbc507b312fb20e9fb5f15726d6a1ac8380c)
and therefore its sum is
![{\displaystyle {6 \over 1-{\frac {1}{3}}}=9}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d4f8f4934fe28a4d7b59b9e5d78209476935a3a3)
Power series
Any geometric series
![{\displaystyle \sum _{k=1}^{\infty }a_{k}\qquad (a_{k}\in \mathbb {C} )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1f07614f2dcac0e6bbffba64bde47a16feb3ba97)
can be written as
![{\displaystyle a\sum _{k=0}^{\infty }x^{k}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a1932cdaf51a4a17a867e637434117c7c779432)
where
![{\displaystyle a=a_{1}\qquad {\textrm {and}}\qquad x={a_{k+1} \over a_{k}}\in \mathbb {C} {\hbox{ is the constant quotient}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b88ea7f895d655068ea7892ecd9c63ad89f4774)
The partial sums of the power series Σxk are
![{\displaystyle S_{n}=\sum _{k=0}^{n-1}x^{k}=1+x+x^{2}+\cdots +x^{n-1}={\begin{cases}{\displaystyle {\frac {1-x^{n}}{1-x}}}&{\hbox{for }}x\neq 1\\n\cdot 1&{\hbox{for }}x=1\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/18c795a6fdee3f63ea43940e75f57282c53222b2)
because
![{\displaystyle (1-x)(1+x+x^{2}+\cdots +x^{n-1})=1-x^{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3231de7f3fb82d8db32c638dc4bcf26a7b131de7)
Since
![{\displaystyle \lim _{n\to \infty }{1-x^{n} \over 1-x}={1-\lim _{n\to \infty }x^{n} \over 1-x}\quad (x\neq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/adfffcdeaa00294610f16321fc41e719638f3b7a)
it is
![{\displaystyle \lim _{n\to \infty }S_{n}={1 \over 1-x}\quad \Leftrightarrow \quad |x|<1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5bcfcf5021095f35052c2a4b66769b406d179a52)
and the geometric series converges (more precisely: converges absolutely) for |x|<1 with the sum
![{\displaystyle \sum _{k=1}^{\infty }a_{k}={a \over 1-q}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/76af0474d32b9091465dd5fc6576a885a9c2c6b6)
and diverges for |x| ≥ 1.
(It diverges definitely — to +∞ or −∞ depending on the sign of a — for x≥1.)