Revision as of 06:13, 21 August 2007 by imported>Paul Wormer
In mathematics, the Legendre polynomials Pn(x) are orthogonal polynomials in the variable -1 ≤ x ≤ 1. Their orthogonality is with unit weight,
![{\displaystyle \int _{-1}^{1}P_{n}(x)P_{n'}(x)dx=0\quad {\hbox{for}}\quad n\neq n'.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3deda84ebe8c4766afb01f94ad53bf4f70a0ece1)
The polynomials are named after the French mathematician Legendre (1752–1833).
In physics they commonly appear as a function of a polar angle 0 ≤ θ ≤ π with x = cosθ
.
By the sequential Gram-Schmidt orthogonalization procedure applied to {1, x, x², x³, …} the polynomials can be constructed.
Rodrigues' formula
The French amateur mathematician Rodrigues (1795–1851) proved the following formula
![{\displaystyle P_{n}(x)={1 \over 2^{n}n!}{\frac {d^{n}(x^{2}-1)^{n}}{dx^{n}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/123ea53f1c9e16b439a536d8533b96c8fd72d27c)
Using the Newton binomial and the equation
![{\displaystyle {\frac {d^{n}x^{m}}{dx^{n}}}={\frac {m!}{(m-n)!}}x^{m-n},\quad {\hbox{for}}\quad n\leq m,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b4ce7c51a37a4c711769c620fae85dd1eec4bbde)
we get the explicit expression
![{\displaystyle P_{n}(x)={\frac {1}{2^{n}\,n!}}\sum _{k=\lceil n/2\rceil }^{n}(-1)^{n-k}{n \choose k}{\frac {(2k)!}{(2k-n)!}}x^{2k-n}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dc69a76d16e0e38d87fd090e29f96ed382317d2c)
Generating function
The coefficients of hn in the following expansion of the generating function are Legendre polynomials
![{\displaystyle {\frac {1}{\sqrt {1-2xh+h^{2}}}}=\sum _{n=0}P_{n}(x)h^{n}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/de6665eb01c43bbe00f21c4493cdf31a8470246c)
The expansion converges for |h| < 1.
This expansion is useful in expanding the inverse distance between two points r and R
![{\displaystyle {\frac {1}{|\mathbf {r} -\mathbf {R} |}}={\frac {1}{\sqrt {r^{2}+R^{2}-2rR\cos \gamma }}}={\frac {1}{R}}{\frac {1}{\sqrt {h^{2}+1-2hx}}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e15adb6a47b2c1f4bb4dcd0865fd5e1fedfe44a3)
where
![{\displaystyle h\equiv {\frac {r}{R}}\quad {\hbox{and}}\quad x\equiv \cos \gamma \equiv \mathbf {r} \cdot \mathbf {R} /(rR).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7f047d055261e9da504fd878935b3ec45c9d4245)
Obviously the expansion makes sense only if R > r.
Normalization
The polynomials are not normalized to unity, but
![{\displaystyle \int _{-1}^{1}P_{n}(x)P_{m}(x)dx={\frac {2}{2n+1}}\delta _{nm},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/87e812aca89754fe532a1dea02735c3905cb88d7)
where δnm is the Kronecker delta.
Differential equation
The Legendre polynomials are solutions of the Legendre differential equation
![{\displaystyle {\frac {d}{dx}}\left[(1-x^{2}){\frac {d}{dx}}P_{n}(x)\right]+n(n+1)P_{n}(x)=(1-x^{2}){\frac {d^{2}P_{n}(x)}{dx^{2}}}-2x{\frac {dP_{n}(x)}{dx}}+n(n+1)P_{n}(x)=0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fe9c2366fc4fb825e483f809d1c67893939239f7)
This differential equation has another class of solutions: Legendre functions of the second kind Qn(x), which are infinite series in 1/x. These functions are of lesser importance.
Note that the differential equation has the form of an eigenvalue equation with eigenvalue -n(n+1) of the operator
![{\displaystyle {\frac {d}{d\cos \theta }}\sin ^{2}\theta {\frac {d}{d\cos \theta }}={\frac {1}{\sin \theta }}{\frac {d}{d\theta }}\sin \theta {\frac {d}{d\theta }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dc554004fc8248cff4b0f8b25eb1c4a725975789)
This operator is the θ-dependent part of the Laplace operator ∇² in spherical polar coordinates.
Properties of Legendre polynomials
Legendre polynomials have parity (-1)n under x → -x,
![{\displaystyle P_{n}(-x)=(-1)^{n}P_{n}(x).\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/401b34278d2647061039638abf554d2857a23c0b)
The following condition normalizes the polynomials
![{\displaystyle P_{n}(1)=1.\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d2b8fff3780a1cd964e7dc0d217d0de88a388503)
Recurrence Relations
Legendre polynomials satisfy the recurrence relations
![{\displaystyle (1-x^{2}){\frac {d}{dx}}P_{n}=(n+1)xP_{n}-(n+1)P_{n+1}=nP_{n-1}-nxP_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d73d3044f6262fc5605682a787d5d6823c3f72b6)
![{\displaystyle (n+1)P_{n+1}-(2n+1)xP_{n}+nP_{n-1}=0\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d673406cd283dd9b50b89aadee4d854036ba4db0)
From these two relations follows easily
![{\displaystyle {\frac {d{\big (}P_{n+1}-P_{n-1}{\big )}}{dx}}=(2n+1)P_{n}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4d7533e258231a4fbc539d1a7c43048d81737375)