Revision as of 10:24, 5 May 2007 by imported>Catherine Woodgold
A Taylor series is an infinite sum of polynomial terms to approximate a function in the region about a certain point
. This is only possible if the function is behaving analytically in this neighbourhood. Such series about the point
are known as Maclaurin series, after Scottish mathematician Colin Maclaurin. They work by ensuring that the approximate series matches up to the nth derivative of the function being approximated when it is approximated by a polynomial of degree
.
Proof
See Taylor's theorem
Series
General formula
An intuitive explanation of the Taylor series is that, in order to approximate the value of
, as a first approximation we use the value at another point
, i.e.
. If
and
are close together and
varies only slowly, this can be a good approximation. Then we refine the approximation step by step. The derivative of
is used to calculate approximately how much
would be expected to change between
and
, and this amount is added as a correction. But we assume we only know the derivative of
at
, and the derivative may change between the two numbers, so another correction is needed, involving the second derivative which is a measure of how much the first derivative changes. So it continues, adding corrections to corrections, and in the limit, if it converges then it converges to the actual value of
even if
and
are far apart.
![{\displaystyle =\sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/86b8291be187366fdf24f64a5a994c1736d5ab73)
where
is the first derivative of the function
, and
is the second derivative, and so on.
Exponential & Logarithmic functions
![{\displaystyle e^{x}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots +{\frac {x^{r}}{r!}}+\cdots \qquad \forall x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0b34d08b44db5c6347af25a86efc0e879fd11be)
![{\displaystyle ln(1+x)=x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-\cdots +(-1)^{r+1}{\frac {x^{r}}{r}}+\cdots \qquad (-1<x\leq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7142d2cfce8ce7c38c04455ae56a2defe23ba66c)
Trigonometric functions
![{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-\cdots +(-1)^{r}{\frac {x^{2r+1}}{(2r+1)!}}+\cdots \qquad \forall x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/39884c688d5dff40b36d806e09e171b68ce1000d)
![{\displaystyle \cos x=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+\cdots +(-1)^{r}{\frac {x^{2r}}{(2r)!}}+\cdots \qquad \forall x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d173a3b295eeb6547beddba0b0a82564bbda3a95)
![{\displaystyle \tan x=x+{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}+\cdots +{\frac {B_{2r}(-4)^{r}(1-4^{r})}{(2r)!}}x^{2r-1}+\cdots \qquad |x|<{\frac {\pi }{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/86bc7e1588c8419928d9ff77863658086d698bfa)
where Bk=kth Bernoulli number.
Inverse trigonometric functions
![{\displaystyle \operatorname {tan^{-1}} x=x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}-\cdots +(-1)^{r}{\frac {x^{2r+1}}{(2r+1)}}+\cdots \qquad (-1<x\leq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0a5c5da59f5852d38d9480a02fff68a4f1aa4404)
Hyperbolic functions
![{\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+\cdots +{\frac {x^{2r+1}}{(2r+1)!}}+\cdots \qquad \forall x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da187a740d5ab332b9c01b549140118d97e1e7da)
![{\displaystyle \cosh x=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+\cdots +{\frac {x^{2r}}{(2r)!}}+\cdots \qquad \forall x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c45315197f334a523962c11a09cd23429ef961d1)
Inverse hyperbolic functions
![{\displaystyle \operatorname {tanh^{-1}} x=x+{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}+\cdots +{\frac {x^{2r+1}}{(2r+1)}}+\cdots \qquad (-1<x\leq 1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/41ae9ef9af6d2274793b2834fdaf2727071eb035)
Calculation of Taylor series for more complicated functions