Elliptic curve

From Citizendium
Revision as of 21:20, 15 February 2007 by imported>David Lehavi (first draft)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

An elliptic curve over a field is a one dimensional Abelian variety over . Alternatively it is a smooth algebraic curve of genus one together with marked point - the identity element.

Curves of genus 1 as smooth plane cubics

If is a homogenous cubic polynomial in three variables, such that at no point all the three derivatives of f are simultaneously zero, then the Null set is a smooth curve of genus 1. Smoothness follows from the condition on derivatives, and the genus can be computed in various ways; e.g.:

  • Let be the class of line in the Picard group , then is rationally equivalent to . Then by the adjunction formula we have .
  • By the genus degree formula for plane curves we see that
  • If we choose a point and a line such that , we may project to by sending a point to the intersection point (if take the line instead of the line ). This is a double cover of a line

with four ramification points. Hence by the Riemann-Hurwitz formula

On the other hand, if is a smooth algebraic curve of genus 1, and are points on , then we by the Riemann-Roch formula we have

Hence the complete linear system is two dimensional, and the map from to the dual linear system is an embedding.

The group operation on a pointed smooth plane cubic

Let be as above, and point on . If and are two points on we set where if we take the line instead, and the intersection is to be understood with multiplicities. The addition on he elliptic curve is defined as . Both the commutativity and the existence of inverse follow from the definition. The proof of the associativity of this operation is more delicate.