Dmitri Mendeleev

From Citizendium
Revision as of 21:31, 6 May 2010 by imported>Anthony.Sebastian (→‎References: add colmant reference cited in footnote re 'eka')
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Timelines [?]
 
This editable Main Article is under development and subject to a disclaimer.

Dmitri Ivanovich Mendeleev[1] (1834-1907) [MEN-de-LAY-ev), Russian chemist, bureaucratic expert, public figure and humanitarian, recognized for numerous contributions to the betterment of Russian society and to the advancement of science, including contributions to chemistry, physical chemistry, physics, chemical engineering, geodesy, metrology, meteorology, aeronautics, mining, manufacturing, agriculture and economics, most well known for having discovered that ordering the then (1869) known chemical elements, sixty-three in number, according to their increasing atomic weights, revealed a repeated cycle of recurrence, every seven elements, of many of their chemical and physical properties — i.e., the properties recurred as functions of the elements' atomic weights — a discovery that permitted him to predict subsequently experimentally-established revised values for the atomic weights of several elements and, audaciously but spectacularly importantly, to predict the subsequently confirmed existence of yet undiscovered elements[2] with atomic weights and properties required to fill in missing elements in an otherwise consistent periodicity in his ordering scheme,[3] a scheme which chemists subsequently referred to as the periodic table of the chemical elements, considering it to reflect a 'law' of chemistry, the periodic law or periodic system (Mendeleev and Jensen 2002).

Mendeleev was a driven man. In addition to producing his greatest work-the periodic law and periodic table of the elements-he researched, lectured, and wrote at a ferocious pace. A fine-print list of his published works takes up ten pages. Chemistry was the heart of his work, but he also played a major role in the economic development of Russia by modernizing that nation's weights and measures and through his advocacy of improved mining, manufacturing, agriculture, and trade. He fought ignorance and mysticism by reforming education and opening the sciences to women, and helped found and head the Russian Chemical Society. He habitually worked day and night, keeping himself going with a mixture of drive, determination, and strong Russian tea (Adler 2002).

According to D. I. Mendeleev’s self-examination, four subjects, more than others, have made his name:  Periodic Law, studying physics of gases at low pressure (the gas state equation), the concept of solution as a composition of molecular associates and The Principles of Chemistry.  In fact, Mendeleev’s scientific interests and his creative activity, besides pure chemistry, stretched over such distant fields as industry (17% of his publications are related to this area), economics (14%), metrology (11%), aeronautics (9%) and agriculture (7%). The Periodic Law seems to constitute only a fragment of his heritage....(Dmitriev IS et al. 2010).

Introduction

DMITRI IVANOVITCH MENDELEYEV was a boy who came out of Siberia, traveled westward to Moscow and St. Petersburg to become one of Russia's greatest scientists. It was he who thought so deeply about the universe that he was able to predict the existence of substances which had never before been seen by man. It was he also who taught his country how to win iron from the Urals, coal from the Donetz Basin, oil from the regions of the Caspian Sea. It was he who exalted the realm of pure science and fervently wished that "many could enter its portals." The Russians finally listened to him, and the country grew industrially, scientifically, and moreover, spiritually, for it was Mendeleyev also who championed the rights of human freedom and protected students from the abuses of the Tsar's regime.

Mendeleyev's chart, evolved into the modern form through the work of Moseley, now hangs in almost every chemistry and physics laboratory in the world. Often, through my years of study I have thought of the Russian scientist, but actually I knew little of him. I halfway expected to probe into his life some day, to uncover the facts behind this obscure genius. One day I read of a contest for books on scientific subjects written for the layman. This was the stimulus I had been waiting for. I entered the contest, I read everything I could get hold of on Mendeleyev and by him--there is no full-length biography in English. Most of this I read in Russian, for I was born in Russia, near the Caspian Sea. And I have lived in Siberia also, and come out of there, it almost seems to me, to tell about the bearded prophet of the snows, the champion of the people.

—Daniel Q. Posin (1948)

When, within a few years of the announcement of Mendeleev's ordering scheme in 1869, chemists discovered three new chemical elements (gallium, scandium, germanium), each in accord with his prediction of their atomic weights and properties, and after confirmation of his proposed revisions of the atomic weights for certain specified elements, as suggested by his periodic table, Mendeleev's contemporaries worldwide eventually came to recognize his discovery as a natural law of chemistry, one that transcended taxonomy, and recognized it as a fundamental contribution to our understanding of the nature of physical reality, setting the stage for his successors, notably the 20th century Danish physicist, Niels Bohr, to formulate a theory of atomic structure and its regularities that explained Mendeleev's periodic law, as well certain deviations to it discovered with the ever expanding discovery of new elements, in particular, the rare earth elements (Brush 1996), and to refine it as reflecting an ordering by atomic number — the number of protons in the element's nucleus — instead of by atomic weight.

As Robert Adler (2002) points out, Mendeleev's periodic law of the chemical elements "gave chemistry three gifts".

  • It organized an otherwise jumble of seemingly disparate elements "into a well-ordered array in which both family traits and similarities to neighbors stood out clearly". That meant chemists no longer had learn certain basic properties of the elements individually, but in groups, and could organize the elements into groups with similar types of reactions in a coherent way.
  • New to chemistry, it gave chemists the power to predict — "he stole from astronomers and physicists the power to predict". Chemists acquired a mantle that mathematical physicists cherished as indication of membership in the society of true scientists.
  • It gave to chemists (and physicists, as it turns out), including Mendeleev, a research agenda, that "something of great importance, something fundamental, must be at work to marshal the elements into such neat ranks and files." (Adler 2002).

As the law of gravity ineluctably evokes the name of Isaac Newton, atomic theory the name of John Dalton, the theory of evolution the name of Charles Darwin, and the theory of relativity the name of Albert Einstein, the periodic law of the chemical elements evokes the name of Dmitri Mendeleev.

Mendeleev's life and work and 'world' he lived in

(PD) Drawing: http://www.russiamap.org/images/full/historical-phys-86.jpg
Mendeleev's birthplace.

As the 17th and last child of his parents, among the 14 who lived long enough to receive a Christian name,[4] Dmitri Mendeleev entered the world on February 8, 1834 (Babaev 2009),[5] in Tobolsk,[6] a city founded in 1587, located in west-central Russia, in the heart of Western Siberia some 8° south of the Arctic Circle,[7] southeast of Moscow (2385 km 1482 mi, by train), south of the confluence of two rivers, the Irtysh and Ob rivers, nearer the confluence of the Irtysh and Tobol rivers, on the bank of the Tobol in the bend of the Irtysh.[8]....

Chronology of events in Mendeleev's life and times

....

Notes

  1. Note: Given name often transliterated also as 'Dimitri', 'Dmitrii', 'Dmitry', and 'Dmitriy'; family name also often transliterated 'Mendeleyev', sometimes 'Mendeleef', and 'Mendeleeff'. The original Russian spelling is Дмитрий Иванович Менделеев.
  2. Mendeleev initially predicted the existence of elements he named 'eka-aluminum', 'eka-boron', and 'eka-silicon', the prefix 'eka' from the Sanskrit numeral 'one', referring to a missing element one period away in his version of the periodic table (Colmant 19xx). In the modern version of the periodic table, the element gallium, discovered and named some five years following Mendeleev's announcement of his periodic system, satisfies the predictive criteria of Mendeleev's 'eka-aluminum' and lies in the same group (vertical column) as aluminum, one period (horizontal row) ahead of the period where aluminum lies. Similarly, when the element germanium was discovered, it fit in the modern version of the periodic table one period ahead of silicon in the same element group, and its properties matched those Mendeleev predicted for 'eka-silicon'.
  3. Mendeleev waited five years before anyone discovered the first new element among the three whose existence and properties he predicted, an event that began to dispel the early skepticism of those who scoffed at the 'fantasy' of a law of chemistry that relied on undiscovered chemical elements. Even then the confirmation had a shaky start, as the new element, gallium, according to its discoverer, the French chemist, Paul Lecoq de Boisbaudran, had a much different specific gravity than Mendeleev’s theoretical calculations had predicted. Characteristically confident, Mendeleev audaciously proposed that Lecoq arrived at an incorrect value of specific gravity owing to impurities in the sample of the element studied. Lecoq promptly subjected a larger, more rigorously purified sample to analysis, the resulting specific gravity now matching Mendeleev’s predicted value (Strathern 2002). Perhaps, then, not so shaky a start, as the whole event served to call attention to the predictive power of the periodic law Mendeleev had put forward.
  4. Mendeleev's biographers agree on Dmitri's status as last born, but not on how many births preceded him. Paul Strathern (2001) states: "Dmitri Ivanovich Mendelevev was born in Tobolsk in western Siberia, the youngest of fourteen or seventeen children (no one seems to know which)." Eugene V. Babaev (2009) states: "Dmitriy Mendeleev was the 17th (and the last) child in the Mendeleevs' family; 3 children died on their births, and therefore only 14 children got Christian names: Maria (1811- 1826), Olga (1815-1866), Ekaterina (1816-1901), Appolinaria (1822- 1848), Elizaveta (1823-1852), Ivan (1826-1862), Maria jr. (1828- 1911), Pavel (1832-1902), and Dmitriy (1834-1907); five others (to some sources - Victor, Varvara, Nikolay, Varvara jr. and Ilya) died in their childhood."
  5. Date given in the Gregorian calendar. Russia did not adopt the Gregorian calendar until 1918. Some sources list Dmitri Mendeleev's birthdate in the Julian calendar, as January 27, 1834.
  6. Some Russian sources give Dmitri Mendeleev’s birthplace as a village of Upper Aremzyany near Tobolsk. See here.
  7. Latitude: 58° 12'; Longitude: 68° 15'.
  8. Tobolsk. From: The People's Encyclopedia of cities and regions of Russia. Google translation of website from Russian.

References

  • Brush SG. (1996) The Reception of Mendeleev's Periodic Law in America and Britain. ISIS 87(4): 595-628.
    • "After spending considerable time perusing the crumbling pages of late nineteenth-century chemistry journals and textbooks, I have confirmed the traditional account: Mendeleev's periodic law attracted little attention (at least in America and Britain) until chemists started to discover some of the elements needed to fill gaps in his table and found that their properties were remarkably similar to those he had predicted. The frequency with which the periodic law was mentioned in journals increased sharply after the discovery of gallium; most of that increase was clearly associated with Mendeleev's prediction of the properties of the new element (see Table 1), although in many cases it is difficult to prove a causal relation since the authors do not mention the prediction. By the late 1880s, most textbooks published in the United States and Britain discussed the periodic law to some extent..."
  • Colmant PP. (1970) Eka-eka-lead? J. Chem. Educ. 47(11):784.
    • Excerpt: [Mendeleev] had foreseen the designations of the unknown elements ranking below a known one, be it in the first, the second, the third (etc.) following line. This was done by him in the famous article, published simultaneously in Russia and in Germany: "Die periodische Gesetzmassigkeit der Chemischen Elemente" [Annalen der Chemie und Phamacie, VIII, Supplement Band, 1871, pp. 133-2291.] The same article may be found in the collection "Ostwald's Klassiker der Exacten Wissenschaften" Nr 68 (1895). Here is an English translation of the relevant passage in p. 92 of this last book:
      • To avoid introducing into scientific language new denomination for unknown elements, I shall name these by using the name of the nearest inferior analogous element, whether even or odd, and I shall join to it the name of a Sanskrit numeral: eka (one), dvi (two), tri (three), tschatur (four), etc...
  • Mendeleev DI, Jensen WB. (2002) Mendeleev on the Periodic Law: Selected Writings, 1869-1905. Selected and Edited by William B. Jensen. Mineola, New York: Dover Publications, Inc. ISBN 0-486-44571-2. | Table of Contents.
    • Publisher's Description: This is the first English-language collection of Mendeleev's most important writings on the periodic law. Thirteen papers and essays reflect the era corresponding to
      • the initial establishment of the periodic law,
      • the priority disputes and experimental confirmations, and
      • the ultimate acceptance for the law and increasing international recognition for Mendeleev.
  • Morris R. (200x) The Last Sorcerers The Path From Alchemy to the Periodic Table. Washington, D.C.: Joseph Henry Press. ISBN 0-309-08905-0. | PDF download. | Google Books preview.
    • "As the field (chemistry) slowly progressed, another pioneer was to emerge almost 100 years later. Dmitri Mendeleev, an eccentric genius who cut his flowing hair and beard but once a year, sought to answer the most pressing questions that remained to chemists: Why did some elements have properties that resembled those of others? Were there certain natural groups of elements? And, if so, how many, and what elements fit into them? It was Mendeleev who finally addressed all these issues when he constructed the first Periodic Table in the late 1800s." | source of quote.
  • Scerri ER. (2007) Mendeleev. In: The Periodic Table: Its Story and Its Significance.Chapter 4, pp. 101-121. Oxford: Oxford University Press. ISBN 9780195305739. | Google Books full-text Chapter 4 online.
    • "An important part of this investigation [this chapter] consists of trying to understand Mendeleev's conception of the nature of chemical elements. This issue forms the basis of what is perhaps the most philosophical aspect of the periodic system..."
  • Strathern P. (2000) Mendeleyev’s Dream: The Quest for the Elements. New York: St. Martin's Press, Thomas Dunne Books. ISBN 0-312-26204-3 (refers to first U.S. edition, 2001). | Google Books preview.