In discrete mathematics, the multinomial coefficient arises as a generalization of the binomial coefficient.
Let k1, k2, ..., km be natural numbers giving a partition of n:
![{\displaystyle k_{1}+k_{2}+\cdots +k_{m}=n.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/23b7b47cab140eeff516bab9eae6b68f462c9853)
The multinomial coefficient is defined by
![{\displaystyle \left({n \atop k_{1}k_{2}\ldots k_{m}}\right)\;{\stackrel {\mathrm {def} }{=}}\;{\frac {n!}{k_{1}!\,k_{2}!\,\ldots k_{m}!}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b8b25a8f80b9d34dcf2c3c66e0839eafda20d9e2)
For m = 2 we may write:
![{\displaystyle k_{1}\equiv k\quad {\hbox{and}}\quad k_{2}=n-k,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b039e4a2362b4999baa2ad06f959a8f47e2e965f)
so that
![{\displaystyle \left({n \atop k\,(n-k)}\right)={\frac {n!}{k!\,(n-k)!}}\equiv {\binom {n}{k}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0010b3d8ce922cc910cd6bb8cdb195e2dcc1ee4)
It follows that the multinomial coefficient is equal to the binomial coefficient for the partition of n into two integer numbers. However, the two coefficients (binomial and multinomial) are notated somewhat differently for m = 2.
The multinomial coefficients arise in the multinomial expansion
![{\displaystyle (x_{1}+x_{2}+\cdots +x_{m})^{n}=\sum _{k_{1}k_{2}\ldots k_{m} \atop k_{1}+k_{2}+\cdots +k_{m}=n}\left({n \atop k_{1}k_{2}\ldots k_{m}}\right)x_{1}^{k_{1}}x_{2}^{k_{2}}\cdots x_{m}^{k_{m}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/275b51ab2554971a26e2f2b9128d3c8fe6b082ac)
The number of terms in this expansion is equal to the binomial coefficient:
Example. Expand (x + y + z)4:
![{\displaystyle m=3,\;n=4\;\quad \Longrightarrow \quad {\binom {n+m-1}{n}}={\binom {6}{4}}=15}](https://wikimedia.org/api/rest_v1/media/math/render/svg/348bbfded3349a817f45f49c9a881eaae915a352)
The 15 terms are the following:
A multinomial coefficient can be expressed in terms of binomial coefficients:
![{\displaystyle \left({k_{1}+k_{2}+\cdots +k_{m} \atop k_{1}k_{2}\ldots k_{m}}\right)={\binom {k_{1}+k_{2}}{k_{1}}}{\binom {k_{1}+k_{2}+k_{3}}{k_{1}+k_{2}}}\cdots {\binom {k_{1}+k_{2}+\cdots +k_{m}}{k_{1}+\cdots +k_{m-1}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eba02f323bf25381656b8fd6b7635b2de4034184)
Reference
D. E. Knuth, The Art of Computer Programming, Vol I. Addison-Wesley, Reading Mass (1968) p. 64