Pole (complex analysis)

From Citizendium
Revision as of 11:00, 5 October 2024 by Suggestion Bot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In complex analysis, a pole is a type of singularity of a function of a complex variable. In the neighbourhood of a pole, the function behave like a negative power.

A function f has a pole of order k, where k is a positive integer, at a point a if the limit

for some non-zero value of r.

The pole is an isolated singularity if there is a neighbourhood of a in which f is holomorphic except at a. In this case the function has a Laurent series in a neighbourhood of a, so that f is expressible as a power series

where the leading coefficient . The residue of f is the coefficient .

An isolated singularity may be either removable, a pole, or an essential singularity.

References

  • Tom M. Apostol (1974). Mathematical Analysis, 2nd ed. Addison-Wesley, 458.