Revision as of 18:00, 9 January 2010 by imported>Peter Schmitt
A geometric series is a series associated with an infinite geometric sequence,
i.e., the quotient q of two consecutive terms is the same for each pair.
A geometric series converges if and only if −1<q<1.
Its sum is
where a is the first term of series.
Power series
Any geometric series
![{\displaystyle \sum _{k=1}^{\infty }a_{k}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f3a010b685126d19bf411b78ce6b1e748e294afe)
can be written as
![{\displaystyle a\sum _{k=0}^{\infty }x^{k}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a1932cdaf51a4a17a867e637434117c7c779432)
where
![{\displaystyle a=a_{1}\qquad {\textrm {and}}\qquad x={a_{k+1} \over a_{k}}\in \mathbb {C} {\hbox{ is the constant quotient}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b88ea7f895d655068ea7892ecd9c63ad89f4774)
The partial sums of the power series are
![{\displaystyle S_{n}=\sum _{k=0}^{n-1}x^{k}=1+x+x^{2}+\cdots +x^{n-1}={\begin{cases}{\displaystyle {\frac {1-x^{n}}{1-x}}}&{\hbox{for }}x\neq 1\\n\cdot 1&{\hbox{for }}x=1\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/18c795a6fdee3f63ea43940e75f57282c53222b2)
The infinite geometric series
converges when |x| < 1, because in that case xk tends to zero for
and hence
![{\displaystyle \lim _{n\rightarrow \infty }S_{n}={\frac {a}{1-x}},\quad {\hbox{for}}\quad |x|<1.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/64ab034cfcd278d8cc6b11775b57e4d721bc4e75)
The geometric series diverges for |x| ≥ 1.