Metric space
In mathematics, a metric space is, roughly speaking, an abstract mathematical structure that generalizes the notion of a Euclidean space which has been equipped with the Euclidean distance, to more general classes of sets such as a set of functions. A metric space consists of two components, a set and a metric on that set. On a metric space, the metric replaces the Euclidean distance as a notion of "distance" between any pair of elements in its associated set (for example, as an abstract distance between two functions in a set of functions) and induces a topology on the set called the metric topology.
Metric on a set
Let be an arbitrary set. A metric on is a function with the following properties:
- (non-negativity)
- (symmetry)
- (triangular inequality)
- if and only if
Formal definition of metric space
A metric space is an ordered pair where is a set and is a metric on .
For shorthand, a metric space is usually written simply as once the metric has been defined or is understood.
Metric topology
A metric on a set induces a particular topology on called the metric topology. For any , let the open ball of radius around the point be defined as . Define the collection of subsets of (meaning that ) consisting of the empty set and all sets of the form:
where is an arbitrary index set (can be uncountable) and and for all . Then the set satisfies all the requirements to be a topology on and is said to be the topology induced by the metric . Any topology induced by a metric is said to be a metric topology.
Examples
- The "canonical" example of a metric space, and indeed what motivated the general definition of such a space, is the Euclidean space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^n} endowed with the Euclidean distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_E} defined by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_E(x,y)=\sqrt{\sum_{k=1}^{n}|x_k-y_k|^2} \quad \forall x,y \in \mathbb{R}^n } .
- Consider the set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C[a,b]} of all real valued continuous functions on the interval Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]\subset \mathbb{R}} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<b} . Define the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d:C[a,b] \times C[a,b] \rightarrow \mathbb{R}} by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d(f,g)=\max_{x \in [a,b]}|f(x)-g(x)| \quad \forall f,g \in C[a,b]} . Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} is a metric on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C[a,b]} and induces a topology on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C[a,b]} often known as the norm topology or uniform topology.
See also
References
1. K. Yosida, Functional Analysis (6 ed.), ser. Classics in Mathematics, Berlin, Heidelberg, New York: Springer-Verlag, 1980