Revision as of 04:41, 21 August 2007 by imported>Paul Wormer
In mathematics, the Legendre polynomials Pn(x) are orthogonal polynomials in the variable -1 ≤ x ≤ 1. Their orthonormality is with unit weight,
![{\displaystyle \int _{-1}^{1}P_{n}(x)P_{n'}(x)dx=0\quad {\hbox{for}}\quad n\neq n'.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3deda84ebe8c4766afb01f94ad53bf4f70a0ece1)
The polynomials are named after the French mathematician Legendre (1752–1833).
In physics they commonly appear as a function of a polar angle 0 ≤ θ ≤ π with x = cosθ
.
By repeated Gram-Schmidt orthogonalizations the polynomials can be constructed.
Rodrigues' formula
The French amateur mathematician Rodrigues (1795–1851) proved the following formula
![{\displaystyle P_{n}(x)={1 \over 2^{n}n!}{\frac {d^{n}(x^{2}-1)^{n}}{dx^{n}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/123ea53f1c9e16b439a536d8533b96c8fd72d27c)
Using the Newton binomial and the equation
![{\displaystyle {\frac {d^{n}x^{m}}{dx^{n}}}={\frac {m!}{(m-n)!}}x^{m-n}\quad {\hbox{for}}\quad m\geq n}](https://wikimedia.org/api/rest_v1/media/math/render/svg/096d9a3ddc8c251f8707480319bfb4a157a1a0ce)
we get the explicit expression
![{\displaystyle P_{n}(x)={\frac {1}{2^{n}\,n!}}\sum _{k=\lceil n/2\rceil }^{n}(-1)^{n-k}{n \choose k}{\frac {(2k)!}{(2k-n)!}}x^{2k-n}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dc69a76d16e0e38d87fd090e29f96ed382317d2c)
Generating function
The coefficients of hn in the following expansion of the generating function are Legendre polynomials
![{\displaystyle {\frac {1}{\sqrt {1-2xh+h^{2}}}}=\sum _{n=0}P_{n}(x)h^{n}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/de6665eb01c43bbe00f21c4493cdf31a8470246c)
The expansion converges for |h| < 1.
This expansion is useful in expanding the inverse distance between two points r and R
![{\displaystyle {\frac {1}{|\mathbf {r} -\mathbf {R} |}}={\frac {1}{\sqrt {r^{2}+R^{2}-2rR\cos \gamma }}}={\frac {1}{R}}{\frac {1}{\sqrt {h^{2}+1-2hx}}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e15adb6a47b2c1f4bb4dcd0865fd5e1fedfe44a3)
where
![{\displaystyle h\equiv {\frac {r}{R}}\quad {\hbox{and}}\quad x\equiv \cos \gamma \equiv \mathbf {r} \cdot \mathbf {R} /(rR).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7f047d055261e9da504fd878935b3ec45c9d4245)
Obviously the expansion makes sense only if R > r.
Normalization
The polynomials are not normalized to unity
![{\displaystyle \int _{-1}^{1}P_{n}(x)P_{m}(x)dx={\frac {2}{2n+1}}\delta _{nm},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/87e812aca89754fe532a1dea02735c3905cb88d7)
where δn m is the Kronecker delta.
Differential equation
The Legendre polynomials are solutions of the Legendre differential equation
![{\displaystyle {\frac {d}{dx}}\left[(1-x^{2}){\frac {d}{dx}}P(x)\right]+n(n+1)P(x)=(1-x^{2}){\frac {d^{2}P(x)}{dx^{2}}}-2x{\frac {dP(x)}{dx}}+n(n+1)P(x)=0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c84dd2817389a99b1ac6a2a2cf9afa2b51257779)
This differential has another class of solutions: Legendre functions of the second kind Q_n(x), which are infinite series in 1/x. These functions are of lesser importance.