Revision as of 07:23, 25 September 2007 by imported>Subpagination Bot
In elementary algebra, the binomial theorem is the identity that states that for any non-negative integer n,
![{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{k}y^{n-k},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a373be626cc84c1a74fb0e6df074fe5247a20775)
or, equivalently,
![{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}y^{k}x^{n-k},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d2652dd0f65dfeb1f6a4b8b9b1b6aef03d241dd4)
where
![{\displaystyle {n \choose k}={\frac {n!}{k!(n-k)!}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9d37c4e453d63aad9ff3c9cee41cb69f5c7e4e48)
One way to prove this identity is by mathematical induction.
The first several cases
![{\displaystyle (x+y)^{0}=1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/96856b6d61fec38413431bb3b0d757900f816cb7)
![{\displaystyle (x+y)^{1}=x+y\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1578bf817c8ecbb8b71f62f6199ae893bf217248)
![{\displaystyle (x+y)^{2}=x^{2}+2xy+y^{2}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f3e52720a3279a1252f0b68c19477e068c14707d)
![{\displaystyle (x+y)^{3}=x^{3}+3x^{2}y+3xy^{2}+y^{3}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a83abe29ae9f5b0b7fef3c08438cf1c4a3f7cb46)
![{\displaystyle (x+y)^{4}=x^{4}+4x^{3}y+6x^{2}y^{2}+4xy^{3}+y^{4}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/245a0078f350439cb01c573802a982514288f7d5)
![{\displaystyle (x+y)^{5}=x^{5}+5x^{4}y+10x^{3}y^{2}+6x^{2}y^{3}+y^{5}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5f15c1b5fcfab673f1297cc9f5e01c62380cacff)
![{\displaystyle (x+y)^{6}=x^{6}+6x^{5}y+15x^{4}y^{2}+20x^{3}y^{3}+15x^{2}y^{4}+6xy^{5}+y^{6}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d6a710dc9b5bd8db524a0173712c928208e75c7)
Newton's binomial theorem
There is also Newton's binomial theorem, proved by Isaac Newton, that goes beyond elementary algebra into mathematical analysis, which expands the same sum (x + y)n as an infinite series when n is not an integer or is not positive.