Human spine
The spinal cord is a thin, tubular structure that is an extension of the central nervous system and is enclosed in and protected by the bony vertebral column.
Structure
The spinal cord extends from the medulla oblongata in the brainstem to the conus medullaris near the lumbar level at L1-2, ending in a fibrous extension known as the filum terminale. In an adult, the spinal cord is approximately 18 inches long. The peripheral regions of the cord contain neuronal white matter tracts that contain sensory and motor neurons. In the centre of the cord is a fluid-filled channel called the 'central canal'; this is filled with cerebrospinal fluid, and is continuous with the fourth cerebral ventricle; this is the fluid that is sampled when a lumbar puncture is taken. The three meninges that cover the spinal cord -- the outer dura mater, the arachnoid membrane, and the innermost pia mater; these are continuous with those in the brainstem and cerebral hemispheres, with cerebrospinal fluid found in the subarachnoid space. The cord is stabilized by the connecting denticulate ligaments which extend from the pia mater laterally between the dorsal and ventral roots.
Spinal cord segments
The spinal cord has 31 segments. From each segment, motor nerve roots leave from the ventral side, and sensory nerve roots enter from the dorsal side. The ventral and dorsal roots join to form paired 'spinal nerves', one on each side of the spinal cord.
There are 31 spinal cord segments:
- 8 cervical segments
- 12 thoracic segments
- 5 lumbar segments
- 5 sacral segments
- 1 coccygeal segment
Because the vertebral column grows longer than the spinal cord, spinal cord segments become higher than the corresponding vertebra, especially in the lower spinal cord segments in adults. In a fetus, the vertebral levels originally correspond with the spinal cord segments. In the adult, the cord ends around the L1/L2 vertebral level at the conus medullaris. For example, the segments for the lumbar and sacral regions are found between the vertebral levels of T9 and L2.
The S4 spinal nerve roots arise from the cord around the upper lumbar/lower thoracic vertebral region, and descend downward in the vertebral canal. After they pass the end of the spinal cord, they are considered to be part of the cauda equina, a structure containing nerve roots (the name is Latin for "horse's tail", reflecting its appearance). The roots for S4 leave the spinal cord in the region of the sacrum, a large, triangular bone at the base of the spine, where it is inserted like a wedge between the two hip bones.
There are two regions where the spinal cord enlarges:
- Cervical enlargement - corresponds roughly to the brachial plexus nerves, which innervate the upper limbs. It includes spinal cord segments from about C4 to T1. The vertebral levels of the enlargement are roughly the same (C4 to T1).The brachial plexus is an arrangement of nerve fibres (a plexus) running from the spine (vertebrae C5-T1), through the neck, the axilla (armpit region), and into the arm. The brachial plexus is responsible for cutaneous and muscular innervation of the entire upper limb, with two exceptions: the trapezius muscle innervated by the spinal accessory nerve and an area of skin near the axilla innervated by the intercostobrachialis nerve.
- Lumbosacral enlargement - corresponds to the lumbosacral plexus nerves, which innervate the lower limbs. It comprises the spinal cord segments from L2 to S3, and is found about the vertebral levels of T9 to T12.
Intervertebral discs
Intervertebral discs (or intervertebral fibrocartilage) lie between adjacent vertebrae in the spine. Each disc forms a cartilaginous joint to allow slight movement of the vertebrae, and acts as a ligament to hold the vertebrae together.
Each disc consist of an annulus fibrosus, surrounding the nucleus pulposus, which consists of several layers of fibrocartilage. The strong annular fibers contain the nucleus pulposus and distribute pressure evenly across the disc. The nucleus pulposus contains loose fibers suspended in a mucoprotein gel with a jelly-like consistency. The nucleus acts as a 'shock absorber', absorbing the impact of the body's daily activities and keeping each pair of vertebrae separated. When one develops a prolapsed disc the nucleus pulposis is forced out of the disc and may put pressure on the nerve located near the disc, giving rise to the symptoms of sciatica.
There is a disc between each pair of vertebrae, except for the first cervical segment, the atlas. The atlas is a ring around the roughly cone-shaped extension of the axis (the second cervical segment). The axis acts as a post around which the atlas can rotate, allowing the neck to swivel. There are twenty-three discs in the spine, which are identified by specifying the particular vertebrae they separate. For example, the disc between the fifth and sixth cervical vertabrae is "C5-6".
Embryology
In the human fetus, the spinal cord extends all the way down to the sacral vertebrae. As a person matures, the rest of the body grows faster than the spinal cord, so that by adulthood, the spinal cord reaches only to the level of the first or second lumbar vertebrae. There is no spinal cord below this level, only the individual spinal nerves that form the cauda equina.
Injury
Spinal cord injuries can be caused by falling on the neck or back, or having the spinal cord moved or disrupted in another way. The vertebral bones or intervertebral disks can shatter, causing the spinal cord to be punctured by a sharp fragment of bone. Usually, victims of spinal cord injuries will suffer loss of feeling in certain parts of their body. In milder cases a victim might only suffer loss of hand or foot function. More severe injury may result in paraplegia, tetraplegia, or full body paralysis below the site of injury to the spinal cord.
The two areas of the spinal cord most often injured are the cervical spine (C1-C7) and the lumbar spine (L1-L5). (The prefixes C,T and L refer to the location of a vertebra in the cervical, thoracic, or lumbar region of the spine.)