Residue (mathematics): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
m (fix links)
mNo edit summary
 
Line 10: Line 10:


Although the choice of the coefficient may look arbitrary, it turns out that it is well motivated by the particularly important role played by this number in the theory of complex functions.
Although the choice of the coefficient may look arbitrary, it turns out that it is well motivated by the particularly important role played by this number in the theory of complex functions.
For example, the residue allows to evaluate [[path integral]]s of the function ''f'' via the [[residue theorem]]. This technique finds many applications in real analysis as well.
For example, the residue allows to evaluate [[path integral]]s of the function ''f'' via the [[residue theorem]]. This technique finds many applications in real analysis as well.[[Category:Suggestion Bot Tag]]

Latest revision as of 11:00, 11 October 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In complex analysis, the residue of a function f holomorphic in an open set with possible exception of a point where the function may admit an isolated singularity, is a particular number describing behaviour of f around .

More precisely, if a function f is holomorphic in a neighbourhood of (but not necessarily at itself), with either a removable singularity or a pole at , then it can be represented as a Laurent series around this point, that is

with some and coefficients

The coefficient is the residue of f at , denoted as or

Although the choice of the coefficient may look arbitrary, it turns out that it is well motivated by the particularly important role played by this number in the theory of complex functions. For example, the residue allows to evaluate path integrals of the function f via the residue theorem. This technique finds many applications in real analysis as well.