imported>Paul Wormer |
imported>Paul Wormer |
Line 9: |
Line 9: |
| f(x) &= A_0 + \sum_{n>0}\left[A_n \cos(\tfrac{2n\pi}{L}x) +B_n \sin(\tfrac{2n\pi}{L}x)\right] | | f(x) &= A_0 + \sum_{n>0}\left[A_n \cos(\tfrac{2n\pi}{L}x) +B_n \sin(\tfrac{2n\pi}{L}x)\right] |
| =A_0 +\frac{1}{2} \sum_{n>0}\left[ (A_n - iB_n)e^{2n\pi ix/L} + (A_n + iB_n)e^{-2n\pi ix/L}\right]\\ | | =A_0 +\frac{1}{2} \sum_{n>0}\left[ (A_n - iB_n)e^{2n\pi ix/L} + (A_n + iB_n)e^{-2n\pi ix/L}\right]\\ |
| &= \sum_{n>0}\left[ f_n e^{2n\pi ix/L} + \bar{f}_n e^{-2n\pi ix/L}\right], | | &= \sum_{n\ge 0}\left[ f_n e^{2n\pi ix/L} + \bar{f}_n e^{-2n\pi ix/L}\right], |
| \end{align} | | \end{align} |
| </math> | | </math> |
The electromagnetic (EM) field is of importance as a carrier of solar energy and electronic signals (radio, TV, etc.). As its name suggests, it consists of two tightly coupled vector fields, the electric field E and the magnetic field B. The Fourier expansion of the electromagnetic field is used in the quantization of the field that leads to photons, light particles of well-defined energy and momentum. Further the Fourier transform plays a role in theory of wave propagation through different media and light scattering.
In the absence of charges and electric currents, both E and B can be derived from a third vector field, the vector potential A. In this article the Fourier transform of the fields E, B, and A will be discussed. It will be seen that the expansion of the vector potential A yields the expansions of the fields E and B. Further the energy and momentum of the EM field will be expressed in the Fourier components of A.
Fourier expansion of a vector field
For an arbitrary real scalar function of x, with 0≤ x≤ L, the Fourier expansion is the following
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} f(x) &= A_0 + \sum_{n>0}\left[A_n \cos(\tfrac{2n\pi}{L}x) +B_n \sin(\tfrac{2n\pi}{L}x)\right] =A_0 +\frac{1}{2} \sum_{n>0}\left[ (A_n - iB_n)e^{2n\pi ix/L} + (A_n + iB_n)e^{-2n\pi ix/L}\right]\\ &= \sum_{n\ge 0}\left[ f_n e^{2n\pi ix/L} + \bar{f}_n e^{-2n\pi ix/L}\right], \end{align} }
where the bar indicates complex conjugation and the definition of the Fourier components is obvious.
For an arbitrary real vector field F its Fourier expansion is easily generalized, it is the following:
![{\displaystyle \mathbf {F} (\mathbf {r} ,t)=\sum _{\mathbf {k} }\left(\mathbf {f} _{k}(t)e^{i\mathbf {k} \cdot \mathbf {r} }+{\bar {\mathbf {f} }}_{k}(t)e^{-i\mathbf {k} \cdot \mathbf {r} }\right),\qquad \mathbf {k} ={\frac {2\pi }{L}}(n_{x},\;n_{y},\;n_{z})\quad {\hbox{with}}\quad n_{x},\,n_{y},\,n_{z}=0,\;1,\;2,\ldots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/1dbf3ef1fb3ebc3913b405511853f51794b40db5)
Such an expansion, labeled by a discrete (countable) set of vectors k, is always possible when F satisfies periodic boundary conditions, i.e., F(r + p,t) = F(r,t) for some finite vector p. To impose such boundary conditions, it is common to consider EM waves as if they are in a virtual cubic box of finite volume V = L3. Waves on opposite walls of the box are enforced to have the same value (usually zero). Note that the waves are not restricted to the box: the box is replicated an infinite number of times in x, y, and z direction.
Vector potential
The magnetic field B satisfies the following Maxwell equation:
![{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {B} (\mathbf {r} ,t)=0,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2b85b81e4db71ee769371b0dcbe851206b89c13a)
that is, the divergence of B is zero. This equation expresses the fact that magnetic monopoles (charges) do not exist (or, rather, have never been found in nature). A divergence-free field, such as B, is a also referred to as a transverse field. By the Helmholtz decomposition, B can be written as
![{\displaystyle \mathbf {B} (\mathbf {r} ,t)={\boldsymbol {\nabla }}\times \mathbf {A} (\mathbf {r} ,t),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e9dacc5b0f4f9a50c79938f61b74c990df7208f)
in which the vector potential A is introduced though the curl ∇×A.
The electric field obeys one of the Maxwell equations, in electromagnetic SI units it reads,
![{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {E} (\mathbf {r} ,t)={\frac {\rho }{\epsilon _{0}}}=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/37ebc0b6f2d01d7892243f75d37ae9b960a9e518)
because it is assumed that charge distributions ρ are zero. The quantity ε0 is the electric constant. Hence, also the electric field E is transverse.
Since there are no charges, the electric potential is zero and the electric field follows
from A by,
![{\displaystyle \mathbf {E} (\mathbf {r} ,t)=-{\frac {\partial \mathbf {A} (\mathbf {r} ,t)}{\partial t}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d44df061b3998ecbc221279135d81e827350f51)
The fact that E can be written this way is due to the choice of Coulomb gauge for A:
![{\displaystyle {\boldsymbol {\nabla }}\cdot \mathbf {A} (\mathbf {r} ,t)=0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5ae266cb3e7e5d04578b6321e0fb879df4f75578)
By definition, a choice of gauge does not affect any measurable properties (the best known example of a choice of gauge is the fixing of the zero of an electric potential, for instance at infinity).
The Coulomb gauge makes A transverse as well, and clearly A is in the same plane as E. (The time differentiation does not affect direction.) So, the vector fields A, B, and E are all in the same plane.
The three fields can be written as a linear combination of two orthonormal vectors, ex and ey. It is more convenient to choose complex unit vectors obtained by a unitary transformation,
![{\displaystyle \mathbf {e} ^{(1)}\equiv {\frac {-1}{\sqrt {2}}}(\mathbf {e} _{x}+i\mathbf {e} _{y})\quad {\hbox{and}}\quad \mathbf {e} ^{(-1)}\equiv {\frac {1}{\sqrt {2}}}(\mathbf {e} _{x}-i\mathbf {e} _{y})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0b44f9d059da048d8643c926f3f4ebdf6dc3c208)
which are orthonormal,
![{\displaystyle \mathbf {e} ^{(\mu )}\cdot {\bar {\mathbf {e} }}^{(\mu ')}=\delta _{\mu ,\mu '}\quad {\hbox{with}}\quad \mu ,\mu '=1,\,-1.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1993373ce8b4a82796d2dd7c33664ed6cd899d58)
Expansions
The Fourier expansion of the vector potential reads
![{\displaystyle \mathbf {A} (\mathbf {r} ,t)=\sum _{\mathbf {k} }\sum _{\mu =-1,1}\left(\mathbf {e} ^{(\mu )}(\mathbf {k} )a_{\mathbf {k} }^{(\mu )}(t)\,e^{i\mathbf {k} \cdot \mathbf {r} }+{\bar {\mathbf {e} }}^{(\mu )}(\mathbf {k} ){\bar {a}}_{\mathbf {k} }^{(\mu )}(t)\,e^{-i\mathbf {k} \cdot \mathbf {r} }\right).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0786fdf093c9191e30799d15acc8b3343e292c92)
The vector potential obeys the wave equation,
![{\displaystyle \nabla ^{2}\mathbf {A} (\mathbf {r} ,t)={\frac {1}{c^{2}}}{\frac {\partial ^{2}\mathbf {A} (\mathbf {r} ,t)}{\partial t^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/983e27cddf5ea2bc48573ada25052ad2de251a55)
The substitution of the Fourier series of A into the wave equation yields for the individual terms,
![{\displaystyle -k^{2}a_{\mathbf {k} }^{(\mu )}(t)={\frac {1}{c^{2}}}{\frac {\partial ^{2}a_{\mathbf {k} }^{(\mu )}(t)}{\partial t^{2}}}\quad \Longrightarrow \quad a_{\mathbf {k} }^{(\mu )}(t)\propto e^{-i\omega t}\quad {\hbox{with}}\quad \omega =kc\quad {\hbox{and}}\quad k\equiv |\mathbf {k} |.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d32b5c9767f4956acb0b529e708ea4f47bb3c183)
It is now an easy matter to construct the corresponding Fourier expansions for E and B from the expansion of the vector potential A.
The expansion for E follows from differentiation with respect to time,
![{\displaystyle \mathbf {E} (\mathbf {r} ,t)=i\sum _{\mathbf {k} }\sum _{\mu =-1,1}\omega \left(\mathbf {e} ^{(\mu )}(\mathbf {k} )a_{\mathbf {k} }^{(\mu )}(t)\,e^{i\mathbf {k} \cdot \mathbf {r} }-{\bar {\mathbf {e} }}^{(\mu )}(\mathbf {k} ){\bar {a}}_{\mathbf {k} }^{(\mu )}(t)\,e^{-i\mathbf {k} \cdot \mathbf {r} }\right).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/234832811e731bfe004fd6b709e6eab8fc2aedf6)
The expansion for B follows by taking the curl,
![{\displaystyle \mathbf {B} (\mathbf {r} ,t)=i\sum _{\mathbf {k} }\sum _{\mu =-1,1}\left({\big [}\mathbf {k} \times \mathbf {e} ^{(\mu )}(\mathbf {k} ){\big ]}\;a_{\mathbf {k} }^{(\mu )}(t)\,e^{i\mathbf {k} \cdot \mathbf {r} }-{\big [}\mathbf {k} \times {\bar {\mathbf {e} }}^{(\mu )}(\mathbf {k} ){\big ]}\;{\bar {a}}_{\mathbf {k} }^{(\mu )}(t)\,e^{-i\mathbf {k} \cdot \mathbf {r} }\right).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4a3e863a2907f9480d3066ee77acf188c0f78fb9)
Fourier-expanded energy
The electromagnetic energy density is
![{\displaystyle {\mathcal {E}}_{\mathrm {Field} }={\frac {1}{2}}(\epsilon _{0}\mathbf {E} \cdot \mathbf {E} +{\frac {1}{\mu _{0}}}\mathbf {B} \cdot \mathbf {B} ),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d9ebe99af71bb98f90a7c71fb54f035c86d4082)
where μ0 is the magnetic constant.
The total energy (classical Hamiltonian) of a finite volume V is defined by
![{\displaystyle H=\iiint _{V}{\mathcal {E}}_{\mathrm {Field} }(\mathbf {r} ,t)\mathrm {d} ^{3}\mathbf {r} .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2ace7dd21755a61e55a12438adf2cb07724726e7)
Use
![{\displaystyle {\begin{aligned}\iiint _{V}&\left(\mathbf {e} ^{(\mu ')}(\mathbf {k'} )a_{\mathbf {k'} }^{(\mu ')}(t)\,e^{i\mathbf {k'} \cdot \mathbf {r} }-{\bar {\mathbf {e} }}^{(\mu ')}(\mathbf {k'} ){\bar {a}}_{\mathbf {k'} }^{(\mu ')}(t)\,e^{-i\mathbf {k'} \cdot \mathbf {r} }\right)\cdot \left(\mathbf {e} ^{(\mu )}(\mathbf {k} )a_{\mathbf {k} }^{(\mu )}(t)\,e^{i\mathbf {k} \cdot \mathbf {r} }-{\bar {\mathbf {e} }}^{(\mu )}(\mathbf {k} ){\bar {a}}_{\mathbf {k} }^{(\mu )}(t)\,e^{-i\mathbf {k} \cdot \mathbf {r} }\right)\mathrm {d} ^{3}\mathbf {r} \\&=-2V\,\delta _{\mu ',\mu }\,\delta _{\mathbf {k'} ,\mathbf {k} }\,a_{\mathbf {k} }^{(\mu )}(t){\bar {a}}_{\mathbf {k} }^{(\mu )}(t)\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0cad472899ffd4a5ae307242f74de209a242ee4a)
and
![{\displaystyle {\frac {k^{2}}{\mu _{0}}}={\frac {\omega ^{2}}{c^{2}\mu _{0}}}={\frac {\epsilon _{0}\mu _{0}\omega ^{2}}{\mu _{0}}}=\epsilon _{0}\omega ^{2}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dcbdab052f188a13c8c0b8c3b0d25da30b3a73da)
Then the classical Hamiltonian in terms of Fourier coefficients takes the form
![{\displaystyle H=2V\epsilon _{0}\sum _{\mathbf {k} }\sum _{\mu =1,-1}\omega ^{2}a_{\mathbf {k} }^{(\mu )}(t){\bar {a}}_{\mathbf {k} }^{(\mu )}(t).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1e17a207d57c4a762fad66aa4500c066b8626e23)
Fourier-expanded momentum
The electromagnetic momentum, PEM, of EM radiation enclosed by a volume V is proportional to an integral of the Poynting vector. In SI units:
![{\displaystyle \mathbf {P} _{\textrm {EM}}\equiv {\frac {1}{c^{2}}}\iiint _{V}\mathbf {S} \,{\textrm {d}}^{3}\mathbf {r} =\epsilon _{0}\iiint _{V}\mathbf {E} (\mathbf {r} ,t)\times \mathbf {B} (\mathbf {r} ,t)\,{\textrm {d}}^{3}\mathbf {r} .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c71ce9d19d02cdbf2f0fe361f0d4eeec9e45d7ef)