Associated Legendre function/Proofs: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
(→‎Orthonormality Proof: To be continued)
imported>Paul Wormer
Line 13: Line 13:
===Proof===
===Proof===


The associated Legendre functions are regular solutions to the  
The associated Legendre functions are regular solutions to the associated Legendre differential equation:  
general Legendre equation:  
:<math>\left( \left[ 1-x^{2} \right] y' \right)' +\left( l\left[ l+1\right]
:<math>\left( \left[ 1-x^{2} \right] y' \right)' +\left( l\left[ l+1\right]
-\frac{m^{2} }{1-x^{2} } \right) y=0, \quad\hbox{where}\quad z' \equiv\frac{dz}{dx}.
-\frac{m^{2} }{1-x^{2} } \right) y=0,
</math>
</math>
where the primes indicate differentiation with respect to ''x''.


This equation is an example of a more general class of equations  
This equation is an example of a more general class of equations  
known as the [[Sturm-Liouville theory | Sturm-Liouville equation]]s. Using Sturm-Liouville  
known as the [[Sturm-Liouville theory | Sturm-Liouville equation]]s. Using Sturm-Liouville  
theory, one can show that
theory, one can show the orthogonality of functions with same superscript ''m'' and different subscripts:
:<math>
:<math>
K_{kl}^{m} =\int\limits_{-1}^{1}P_{k}^{m} \left( x\right) P_{l}^{m}
K_{kl}^{m} =\int\limits_{-1}^{1}P_{k}^{m} \left( x\right) P_{l}^{m}
\left( x\right)  dx  = 0 \quad\hbox{when}\quad k \ne l .
\left( x\right)  dx  = 0 \quad\hbox{if}\quad k \ne l .
</math>
</math>
 
In the case ''k'' = ''l'' it remains to find the normalization factor of the associated Legendre functions such that the "overlap" integral
However, one can find <math>K_{kl}^{m} </math>  
:<math>
directly from the above definition, whether or not ''k'' = ''l'':
K_{kl}^{m} =1.
</math>
One can evaluate the overlap integral directly from the definition of the associated Legendre polynomials given in the main article, whether or not ''k'' = ''l''. Indeed, insert twice the definition:
:<math>
:<math>
K_{kl}^{m} =\frac{1}{2^{k+l} \left( k!\right) \left( l!\right) }
K_{kl}^{m} =\frac{1}{2^{k+l}\; k! \; l! }
\int\limits_{-1}^{1}\left\{ \left( 1-x^{2} \right) ^{m} \frac{d^{k+m}
\int\limits_{-1}^{1} \left\{ (1-x^{2})^{m} \frac{d^{k+m}
}{dx^{k+m} } \left[ \left( x^{2} -1\right) ^{k} \right] \right\} \left\{
}{dx^{k+m} } \left[ (x^{2} -1)^{k} \right] \right\} \left\{
\frac{d^{l+m} }{dx^{l+m} } \left[ \left( x^{2} -1\right) ^{l} \right]
\frac{d^{l+m} }{dx^{l+m} } \left[ \left( x^{2} -1\right) ^{l} \right]
\right\}  dx.  
\right\}  dx.  
Line 38: Line 40:


Since ''k'' and ''l''  occur symmetrically, one can without loss of generality assume  
Since ''k'' and ''l''  occur symmetrically, one can without loss of generality assume  
that  ''l'' &ge; k.  Indeed, integrate by parts ''l'' + ''m'' times,  
that  ''l'' &ge; k.  Use the well-known integration-by-parts equation
where the curly brackets in the integral indicate the factors, the first being  
:<math>
\int_{-1}^1 u\; v'\; dx = \left. u\,v\right|_{-1}^1 - \int_{-1}^{1} v u' \;dx
</math>
''l'' + ''m'' times, where the curly brackets in the integral indicate the factors, the first being  
''u'' and the second ''v''&rsquo;. For each of the first ''m'' integrations by parts,  
''u'' and the second ''v''&rsquo;. For each of the first ''m'' integrations by parts,  
''u'' in the  <math> uv|_{-1}^1</math> term contains the factor  (1&minus;x<sup>2</sup>),  
''u'' in the  <math> uv|_{-1}^1</math> term contains the factor  (1&minus;x<sup>2</sup>),  
Line 46: Line 51:
so the term also vanishes. This means:
so the term also vanishes. This means:
:<math>
:<math>
K_{kl}^{m} =\frac{\left( -1\right) ^{l+m} }{2^{k+l} \left( k!\right)
K_{kl}^{m} =\frac{\left( -1\right) ^{l+m} }{2^{k+l} \; k!\;
\left( l!\right) } \int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l}
l! } \int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l}
\frac{d^{l+m} }{dx^{l+m} } \left[ \left( 1-x^{2} \right) ^{m}
\frac{d^{l+m} }{dx^{l+m} } \left[ \left( 1-x^{2} \right) ^{m}
\frac{d^{k+m} }{dx^{k+m} } \left[ \left( x^{2} -1\right) ^{k} \right]
\frac{d^{k+m} }{dx^{k+m} } \left[ \left( x^{2} -1\right) ^{k} \right]
Line 55: Line 60:
Expand the second factor using Leibnitz' rule:
Expand the second factor using Leibnitz' rule:


<math>\frac{d^{l+m} }{dx^{l+m} } \left[ \left( 1-x^{2} \right) ^{m}
:<math>\frac{d^{l+m} }{dx^{l+m} } \left[ \left( 1-x^{2} \right) ^{m}
\frac{d^{k+m} }{dx^{k+m} } \left[ \left( x^{2} -1\right) ^{k} \right]
\frac{d^{k+m} }{dx^{k+m} } \left[ \left( x^{2} -1\right) ^{k} \right]
\right] =\sum\limits_{r=0}^{l+m}\frac{\left( l+m\right) !}{r!\left(
\right] =\sum\limits_{r=0}^{l+m}
l+m-r\right) !}  \frac{d^{r} }{dx^{r} } \left[ \left( 1-x^{2} \right) ^{m}
\binom{l+m}{r}
\frac{d^{r} }{dx^{r} } \left[ \left( 1-x^{2} \right) ^{m}
\right] \frac{d^{l+k+2m-r} }{dx^{l+k+2m-r} } \left[ \left( x^{2} -1\right)
\right] \frac{d^{l+k+2m-r} }{dx^{l+k+2m-r} } \left[ \left( x^{2} -1\right)
^{k} \right]. </math>
^{k} \right].  
</math>


The leftmost derivative in the sum is non-zero only when  
The leftmost derivative in the sum is non-zero only when ''r'' &le; 2''m''
<math>r\leq 2m</math>
(remembering that ''m'' &le; ''l''). The other derivative is non-zero only when ''k'' + ''l'' + 2''m'' &minus; ''r'' &le; 2''k'', that is, when ''r'' &ge; 2''m'' + ''l'' &minus; ''k''. Because ''l'' &ge; ''k'' these two conditions imply that the only non-zero term in the sum occurs when ''r'' = 2''m'' and ''l'' = ''k''.  
(remembering that  
<math>m\leq l</math>
). The other derivative is non-zero only when  
<math>k+l+2m-r\leq 2k</math>,  
that is, when
<math>r\geq 2m+(l-k).</math>
Because  
<math>l\geq k</math>
these two conditions imply that the only non-zero term in the  
sum occurs when  
<math>r=2m</math>
and  
<math>l=k.</math>
So:
So:
 
:<math>
<math>K_{kl}^{m} =\frac{\left( -1\right) ^{l+m} }{2^{2l} \left( l!\right) ^{2}
K_{kl}^{m} =\delta_{kl} \; \frac{(-1)^{l+m} }{2^{2l}\, (l!)^{2}}  
} \frac{\left( l+m\right) !}{\left( 2m\right) !\left( l-m\right) !} \delta
\binom{l+m}{2m}
_{kl} \int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l} \frac{d^{2m}
\int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l} \frac{d^{2m}
}{dx^{2m} } \left[ \left( 1-x^{2} \right) ^{m} \right] \frac{d^{2l}
}{dx^{2m} } \left[ \left( 1-x^{2} \right) ^{m} \right] \frac{d^{2l}
}{dx^{2l} } \left[ \left( 1-x^{2} \right) ^{l} \right]  dx. </math>
}{dx^{2l} } \left[ \left( 1-x^{2} \right) ^{l} \right]  dx,
 
</math>
To evaluate the differentiated factors, expand  
where &delta;<sub>''kl''</sub> is the [[Kronecker delta]] that shows the orthogonality of functions with ''l'' &ne; ''k''.
<math>\left( 1-x^{2} \right) ^{k} </math>
To evaluate the differentiated factors, expand (1&minus;x&sup2;)<sup>''k''</sup>
using the binomial theorem:  
using the binomial theorem:  
<math>\left( 1-x^{2} \right) ^{k} =\sum\limits_{j=0}^{k}\left(
:<math>
\begin{array}{c}
\left( 1-x^{2} \right) ^{k} =\sum\limits_{j=0}^{k} \binom{k}{j}  
k \\ j
( -1)^{k-j} x^{2(k-j)}.   
\end{array}
</math>
\right) \left( -1\right) ^{k-j} x^{2\left( k-j\right) }.  </math>
The only term that survives differentiation 2''k''
The only thing that survives differentiation  
times is the ''x''<sup>2''k''</sup>
<math>2k</math>
term, which after differentiation gives
times is the  
:<math>
<math>x^{2k} </math>
(-1)^k \, \binom{k}{0}\, 2k! = (-1)^{k}\, (2k)! \, .
term, which (after differentiation) equals:
</math>  
<math>\left( -1\right) ^{k} \left(
Therefore:
\begin{array}{c}
:<math>
k \\ 0
K_{kl}^{m} =\delta _{kl}\;\frac{1}{2^{2l}\; (l!) ^{2} } \frac{(2l)!\,(l+m)!}{(l-m)!}  
\end{array}
\int\limits_{-1}^{1}(x^{2} -1)^{l}  dx  
\right) \left( 2k\right) !=\left( -1\right) ^{k} \left( 2k\right) !</math>. Therefore:
\qquad\qquad\qquad\qquad\qquad\qquad (1)
 
</math>  
<math>K_{kl}^{m} =\frac{1}{2^{2l} \left( l!\right) ^{2} } \frac{\left(
2l\right) !\left( l+m\right) !}{\left( l-m\right) !} \delta _{kl}
\int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l}  dx </math> ................................................. (1)
 
Evaluate  
Evaluate  
<math>\int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l}  dx </math>
:<math>
\int\limits_{-1}^{1}(x^{2} -1)^{l}  dx </math>
by a change of variable:  
by a change of variable:  
<math>x=\cos \theta \Rightarrow dx=-\sin \theta d\theta\;and\; 1-x^{2} =\sin \theta. </math>   
:<math>
Thus, <math>\int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l}  dx
x=\cos \theta\; \Longrightarrow\; dx=-\sin \theta d\theta\quad\hbox{and}\quad 1-x^{2} =(\sin \theta)^2.  
=\int\limits_{0}^{\pi }\left( \sin \theta \right) ^{2l+1}  d\theta. </math> [To eliminate the negative sign on the second integral, the limits are switched
</math>   
from <math> \pi \rightarrow  0 \; </math> to <math>\; 0 \rightarrow \pi </math> , recalling that <math> \; -1 = \cos (\pi) \;</math> and <math>\; 1 = \cos (0) \; </math>].
Thus,  
:<math>\int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l}  dx
=(-1)^{2l+1}\int\limits_{\pi}^{0}\left( \sin \theta \right) ^{2l+1}  d\theta =
\int\limits_{0}^{\pi}\left( \sin \theta \right) ^{2l+1}  d\theta,  
</math>  
where we recall that
:<math>  -1 = \cos\,\pi \quad\hbox{and}\quad  1 = \cos\,0.
</math>
The limits were switched from
:<math> \pi \rightarrow  0 \; \quad\hbox{and}\quad 0 \rightarrow \pi </math> ,
which accounts for one minus sign and further for integer ''l'': (&minus;1)<sup>2''l''</sup> =1 .
A  table of standard trigonometric integrals<ref>[http://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions Wikipedia]</ref> shows:
:<math>
\int\limits_{0}^{\pi }\sin ^{n} \theta  d\theta  =\frac{\left. -\sin
\theta \cos \theta \right|_{0}^{\pi } }{n} +\frac{(n-1) }{n}
\int\limits_{0}^{\pi }\sin ^{n-2} \theta  d\theta. 
</math>
Since
:<math>\left. -\sin \theta \cos \theta \right| _{0}^{\pi } =0,</math> <math>\int\limits_{0}^{\pi }\sin ^{n} \theta  d\theta  =\frac{\left(
n-1\right) }{n} \int\limits_{0}^{\pi }\sin ^{n-2} \theta  d\theta 
</math>
for ''n'' &ge; 2.  


A [http://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions table of standard trigonometric integrals] shows:
<math>\int\limits_{0}^{\pi }\sin ^{n} \theta  d\theta  =\frac{\left. -\sin
\theta \cos \theta \right| _{0}^{\pi } }{n} +\frac{\left( n-1\right) }{n}
\int\limits_{0}^{\pi }\sin ^{n-2} \theta  d\theta.  </math>
Since <math>\left. -\sin \theta \cos \theta \right| _{0}^{\pi } =0,</math> <math>\int\limits_{0}^{\pi }\sin ^{n} \theta  d\theta  =\frac{\left(
n-1\right) }{n} \int\limits_{0}^{\pi }\sin ^{n-2} \theta  d\theta  </math>
for
<math>n\geq 2.</math>
Applying this result to  
Applying this result to  
<math>\int\limits_{0}^{\pi }\left( \sin \theta \right) ^{2l+1}  d\theta  </math>
:<math>\int\limits_{0}^{\pi }\left( \sin \theta \right) ^{2l+1}  d\theta  </math>
and changing the variable back to  
and changing the variable back to ''x''
<math>x</math>
yields:  
yields:  
<math>\int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l}  dx =\frac{2\left(
:<math>\int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l}  dx =\frac{2\left(
l+1\right) }{2l+1} \int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l-1}  dx
l+1\right) }{2l+1} \int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l-1}  dx
</math>
</math>
for <math>l\geq 1.</math>
for ''l'' &ge; 1.
Using this recursively:
Using this recursively:
 
:<math>\int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l}  dx =\frac{2\left(
<math>\int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l}  dx =\frac{2\left(
l+1\right) }{2l+1} \frac{2\left( l\right) }{2l-1} \frac{2\left( l-1\right)
l+1\right) }{2l+1} \frac{2\left( l\right) }{2l-1} \frac{2\left( l-1\right)
}{2l-3} ...\frac{2\left( 2\right) }{3} \left( 2\right) =\frac{2^{l+1}
}{2l-3} ...\frac{2\left( 2\right) }{3} \left( 2\right) =\frac{2^{l+1}
Line 141: Line 143:
l!\right) ^{2} }{\left( 2l+1\right) !}. </math>
l!\right) ^{2} }{\left( 2l+1\right) !}. </math>


Applying this result to (1):
Applying this result to equation (1):
 
:<math>K_{kl}^{m} =\delta _{kl}\; \frac{1}{2^{2l}\; (l!)^{2} } \frac{(
2l)!\;(l+m)!}{(l-m)!}\; \frac{2^{2l+1} \;(l!)^{2} }{( 2l+1)!}  = \delta _{kl}\,\frac{2}{2l+1}
\frac{( l+m) !}{( l-m) !}
\qquad\qquad \mathbf{QED}.
</math>


<math>K_{kl}^{m} =\frac{1}{2^{2l} \left( l!\right) ^{2} } \frac{\left(
Clearly, if we define new associated Legendre functions  by a constant times the old ones,
2l\right) !\left( l+m\right) !}{\left( l-m\right) !} \frac{2^{2l+1} \left(
:<math>
l!\right) ^{2} }{\left( 2l+1\right) !} \delta _{kl} =\frac{2}{2l+1}
\bar{P}^m_l(x) \equiv \sqrt{ \frac{2l+1}{2}\; \frac{(l-m)!}{(l+m)!} }\; P^m_l(x)
\frac{\left( l+m\right) !}{\left( l-m\right) !} \delta _{kl}. </math>
</math>
QED.
then the overlap integral becomes,
:<math>
K^m_{kl} = \int\limits_{-1}^{1} \bar{P}^m_k(x) \bar{P}^m_l(x) \;dx = \delta_{kl},
</math>
that is, the new functions are normalized to unity.
===Note===
<references />


===Comments===
===Comments===

Revision as of 06:33, 5 September 2009

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
Proofs [?]
 
More information relevant to Associated Legendre function.

It will be demonstrated that the associated Legendre functions are orthogonal and their normalization constant will be derived.

Theorem

where:

Proof

The associated Legendre functions are regular solutions to the associated Legendre differential equation:

where the primes indicate differentiation with respect to x.

This equation is an example of a more general class of equations known as the Sturm-Liouville equations. Using Sturm-Liouville theory, one can show the orthogonality of functions with same superscript m and different subscripts:

In the case k = l it remains to find the normalization factor of the associated Legendre functions such that the "overlap" integral

One can evaluate the overlap integral directly from the definition of the associated Legendre polynomials given in the main article, whether or not k = l. Indeed, insert twice the definition:

Since k and l occur symmetrically, one can without loss of generality assume that l ≥ k. Use the well-known integration-by-parts equation

l + m times, where the curly brackets in the integral indicate the factors, the first being u and the second v’. For each of the first m integrations by parts, u in the term contains the factor (1−x2), so the term vanishes. For each of the remaining l integrations, v in that term contains the factor (x2−1) so the term also vanishes. This means:

Expand the second factor using Leibnitz' rule:

The leftmost derivative in the sum is non-zero only when r ≤ 2m (remembering that ml). The other derivative is non-zero only when k + l + 2mr ≤ 2k, that is, when r ≥ 2m + lk. Because lk these two conditions imply that the only non-zero term in the sum occurs when r = 2m and l = k. So:

where δkl is the Kronecker delta that shows the orthogonality of functions with lk. To evaluate the differentiated factors, expand (1−x²)k using the binomial theorem:

The only term that survives differentiation 2k times is the x2k term, which after differentiation gives

Therefore:

Evaluate

by a change of variable:

Thus,

where we recall that

The limits were switched from

,

which accounts for one minus sign and further for integer l: (−1)2l =1 . A table of standard trigonometric integrals[1] shows:

Since

for n ≥ 2.

Applying this result to

and changing the variable back to x yields:

for l ≥ 1. Using this recursively:

Applying this result to equation (1):

Clearly, if we define new associated Legendre functions by a constant times the old ones,

then the overlap integral becomes,

that is, the new functions are normalized to unity.

Note

Comments

The orthogonality of the Associated Legendre Functions can be demonstrated in different ways. The presented proof assumes only that the reader is familiar with basic calculus and is therefore accessible to the widest possible audience. However, as mentioned, their orthogonality also follows from the fact that the equation they solve belongs to a family known as the Sturm-Liouville equations.

It is also possible to demonstrate their orthogonality using principles associated with operator calculus. For example, the proof starts out by implicitly proving the anti-Hermiticity of

Indeed, let w(x) be a function with w(1) = w(−1) = 0, then

Hence

The latter result is used in the proof. Knowing this, the hard work (given above) of computing the normalization constant remains.

When m=0, an Associated Legendre Function is identifed as , which is known as the Legendre Polynomial of order l. To demonstrate orthogonality for this limited case, we may use a result from the theory of orthogonal polynomials. Namely, a Legendre polynomial of order l is orthogonal to any polynomial of lower order. In Bra-Ket notation (kl)

then

The bra is a polynomial of order k, and since kl, the bracket is non-zero only if k = l.