Group action: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
m (typo)
imported>Richard Pinch
(relation between orbit and stabiliser)
Line 37: Line 37:


If ''x'' and ''y'' are in the same orbit, their stabilisers are [[conjugate]].
If ''x'' and ''y'' are in the same orbit, their stabilisers are [[conjugate]].
The elements of the orbit of ''x'' are in [[one-to-one correspondence]] with the right [[coset]]s of the stabiliser of ''x'' by
:<math> x^g \leftrightarrow Stab(x)g . \,</math>
Hence the order of the orbit is equal to the [[index]] of the stabiliser.  If ''G'' is finite, the order of the orbit is a factor of the order of ''G''.


A '''fixed point''' of an action is just an element ''x'' of ''X'' such that <math>x^g = x</math> for all ''g'' in ''G'': that is, such that <math>Orb(x) = \{x\}</math>.
A '''fixed point''' of an action is just an element ''x'' of ''X'' such that <math>x^g = x</math> for all ''g'' in ''G'': that is, such that <math>Orb(x) = \{x\}</math>.


===Examples===
===Examples===

Revision as of 07:04, 16 November 2008

In mathematics, a group action is a relation between a group G and a set X in which the elements of G act as operations on the set.

Formally, a group action is a map from the Cartesian product , written as or or satisfying the following properties:

From these we deduce that , so that each group element acts as an invertible function on X, that is, as a permutation of X.

If we let denote the permutation associated with action by the group element , then the map from G to the symmetric group on X is a group homomorphism, and every group action arises in this way. We may speak of the action as a permutation representation of G. The kernel of the map A is also called the kernel of the action, and a faithful action is one with trivial kernel. Since we have

where K is the kernel of the action, there is no loss of generality in restricting consideration to faithful actions where convenient.

Examples

  • Any group acts on any set by the trivial action in which .
  • The symmetric group acts of X by permuting elements in the natural way.
  • The automorphism group of an algebraic structure acts on the structure.

Stabilisers

The stabiliser of an element x of X is the subset of G which fixes x:

The stabiliser is a subgroup of G.

Orbits

The orbit of any x in X is the subset of X which can be "reached" from x by the action of G:

The orbits partition the set X: they are the equivalence classes for the relation defined by

If x and y are in the same orbit, their stabilisers are conjugate.

The elements of the orbit of x are in one-to-one correspondence with the right cosets of the stabiliser of x by

Hence the order of the orbit is equal to the index of the stabiliser. If G is finite, the order of the orbit is a factor of the order of G.

A fixed point of an action is just an element x of X such that for all g in G: that is, such that .


Examples

  • In the trivial action, every point is a fixed point and the orbits are all singletons.
  • Let be a permutation in the usual action of on . The cyclic subgroup <math\langle \pi \rangle</math> generated by acts on X and the orbits are the cycles of .

Transitivity

An action is transitive or 1-transitive if for any x and y in X there exists a g in G such that . Equivalently, the action is transitive if it has only one orbit.