imported>Sekhar Talluri |
imported>Sekhar Talluri |
Line 1: |
Line 1: |
| {{subpages}} | | {{subpages}} |
| {Def|Nuclear Overhauser effect} | | {{Def|Nuclear overhauser effect}}} |
|
| |
|
| The Noe enhancement is quantitatively defined as | | The Noe enhancement is quantitatively defined as |
Revision as of 02:02, 12 October 2008
Change in intensity of a signal when irradiation is carried out at the resonance frequency of a spatially proximal nucleus.}
The Noe enhancement is quantitatively defined as
![{\displaystyle \eta ={\frac {S_{z}-S_{z,equil}}{S_{z,equil}}}\qquad Eq.1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4b04e1478135936879423fd76364c1561c6787c3)
For a pair of nonidentical spins I and S, :
![{\displaystyle {\frac {d<I_{z}>}{dt}}=-\rho _{I}(<I_{z}>-<I_{z,equil}>)-\sigma (<S_{z}>-<S_{z,equil}>)\qquad Eq.2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/62fab2c7135b9ab72abff7e4ae9c1a68305d3ec8)
![{\displaystyle {\frac {d<S_{z}>}{dt}}=-\rho _{S}(<S_{z}>-<S_{z,equil}>)-\sigma (<I_{z}>-<I_{z,equil}>)\qquad Eq.3}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0258d660b3bfb00fd27a8beda614f84c1f4dabd2)
is called the cross relaxation rate and is responsible for the Nuclear overhauser effect.
![{\displaystyle \rho _{I}={\frac {\gamma _{I}^{2}\gamma _{S}^{2}\hbar ^{2}}{10r^{6}}}(J(w_{I}-w_{S})+3J(w_{I})+6J(w_{I}+w_{S}))\qquad Eq.4}](https://wikimedia.org/api/rest_v1/media/math/render/svg/087a9588657051b12ab5a9a8d65c92566c3f1d73)
![{\displaystyle \sigma ={\frac {\gamma _{I}^{2}\gamma _{S}^{2}\hbar ^{2}}{10r^{6}}}(-J(w_{I}-w_{S})+6J(w_{I}+w_{S})))\qquad Eq.5}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da5ef150cec7bd4c1e03fc32d0171ad538ea6912)
![{\displaystyle {\frac {1}{T_{2}}}={\frac {\gamma ^{2}\gamma _{S}^{2}\hbar ^{2}}{20r^{6}}}(4J(0)+J(w_{I}-w_{S})+3J(w_{I})+6J(w_{I}+w_{S})+6J(w_{S}))\qquad Eq.6}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4272ce788cacc78be9ff8ffc104dd9002e96fa3d)
In the steady state
, when the resonance frequency of spin I is irradiated ,
, therefore:
![{\displaystyle (<S_{z}>-<S_{z,equil}>)={\frac {\sigma }{\rho _{S}}}(<I_{z,equil}>)\qquad (fromEq.3)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7badcabe76d9f4b02fbbf5e68f1d04a56a5b7d63)
Assuming that the expectation values of magnetization are proportional to the magnetogyric ratios:
![{\displaystyle \eta ={\frac {<S_{z}>-<S_{z,equil}>}{<S_{z,equil}>}}={\frac {\sigma }{\rho _{S}}}{\frac {\gamma _{I}}{\gamma _{S}}}\qquad Eq.7}](https://wikimedia.org/api/rest_v1/media/math/render/svg/adda36a103bdeb4521c1f313d131c99b5a1d7870)
This indicates that considerable enhancement in the intensity of the S signal can be obtained by irradiation at the frequency of the I spin, provided that
, because
when
.
However, when
,
and negative Noe enhancements are obtained.
The sign of
changes from positive to negative when
is close to one and under such conditions the Noe effect may not be observable. This happens for rigid molecules with relative molecular mass about 500 at room temperature e.g. many hexapeptides.