Artificial respiration: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Robert Badgett
imported>Robert Badgett
Line 17: Line 17:
*[[Tracheostomy]]
*[[Tracheostomy]]
==Types of air delivery==
==Types of air delivery==
* [[Positive end expiratory pressure]] (PEEP). A [[randomized controlled trial]] has compared titrating PEEP with esophageal pressure and recommendations by the [http://www.ardsnet.org/ Acute Respiratory Distress Syndrome Network] (ARDSNet).<ref name="pmid19001507">{{cite journal |author=Talmor D, Sarge T, Malhotra A, ''et al'' |title=Mechanical ventilation guided by esophageal pressure in acute lung injury |journal=N. Engl. J. Med. |volume=359 |issue=20 |pages=2095–104 |year=2008 |month=November |pmid=19001507 |doi=10.1056/NEJMoa0708638 |url=http://content.nejm.org/cgi/pmidlookup?view=short&pmid=19001507&promo=ONFLNS19 |issn=}}</ref>
* [[Positive end expiratory pressure]] (PEEP). PEEP may be important for patients with [[acute respiratory distress syndrome]] (P/F ratio > 200).<ref name="pmid20197533">{{cite journal| author=Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD et al.| title=Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. | journal=JAMA | year= 2010 | volume= 303 | issue= 9 | pages= 865-73 | pmid=20197533
| url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=clinical.uthscsa.edu/cite&email=badgett@uthscdsa.edu&retmode=ref&cmd=prlinks&id=20197533 | doi=10.1001/jama.2010.218 }} <!--Formatted by http://sumsearch.uthscsa.edu/cite/--></ref> A [[randomized controlled trial]] has compared titrating PEEP with esophageal pressure and recommendations by the [http://www.ardsnet.org/ Acute Respiratory Distress Syndrome Network] (ARDSNet).<ref name="pmid19001507">{{cite journal |author=Talmor D, Sarge T, Malhotra A, ''et al'' |title=Mechanical ventilation guided by esophageal pressure in acute lung injury |journal=N. Engl. J. Med. |volume=359 |issue=20 |pages=2095–104 |year=2008 |month=November |pmid=19001507 |doi=10.1056/NEJMoa0708638 |url=http://content.nejm.org/cgi/pmidlookup?view=short&pmid=19001507&promo=ONFLNS19 |issn=}}</ref>


===Noninvasive===
===Noninvasive===
Line 30: Line 31:
* Some authors interchange [[Intermittent positive-pressure breathing|IPPB]] and IPPV with bilevel PAP as done in a recent [[randomized controlled trial]].<ref name="pmid18614781">{{cite journal |author=Gray A, Goodacre S, Newby DE, Masson M, Sampson F, Nicholl J |title=Noninvasive ventilation in acute cardiogenic pulmonary edema |journal=N. Engl. J. Med. |volume=359 |issue=2 |pages=142–51 |year=2008 |month=July |pmid=18614781 |doi=10.1056/NEJMoa0707992 |url=http://content.nejm.org/cgi/pmidlookup?view=short&pmid=18614781&promo=ONFLNS19 |issn=}}</ref>
* Some authors interchange [[Intermittent positive-pressure breathing|IPPB]] and IPPV with bilevel PAP as done in a recent [[randomized controlled trial]].<ref name="pmid18614781">{{cite journal |author=Gray A, Goodacre S, Newby DE, Masson M, Sampson F, Nicholl J |title=Noninvasive ventilation in acute cardiogenic pulmonary edema |journal=N. Engl. J. Med. |volume=359 |issue=2 |pages=142–51 |year=2008 |month=July |pmid=18614781 |doi=10.1056/NEJMoa0707992 |url=http://content.nejm.org/cgi/pmidlookup?view=short&pmid=18614781&promo=ONFLNS19 |issn=}}</ref>
* Some authors interchange bilevel PAP with BiPAP. The latter is a specific brand of a bilevel PAP ventilator.
* Some authors interchange bilevel PAP with BiPAP. The latter is a specific brand of a bilevel PAP ventilator.
==Supportive measures==
==Supportive measures==
==Humidification==
==Humidification==

Revision as of 15:56, 5 March 2010

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In medicine and respiratory therapy,, artificial respiration is "Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have respiratory insufficiency to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2)."[1]

Airway access and protection

The methods differ by the means used to protect or provide access to the airway, and the way in which air is provided.

Manual methods

Mouth-to-mouth or mouth-to-nose respiration can be performed with no equipment. A slight variant uses a thin mask to protect the rescuer, to be distinguished from positive ventilation masks.

Mask methods

Extraglottic methods

Using intratracheal intubation

Intratracheal intubation involves the insertion of a tube into the trachea to maintain an airway and to prevent obstruction.

Surgical airway

Types of air delivery

Noninvasive

According to the U.S. National Library of Medicine, the terms for the types of nonvinvasive ventilation, also called noninvasive positive pressure ventilation (NPPV) are:

Inconsistent terminology of noninvasive modes

The terminology for noninvasive respiratory support is inconsistently used in the medical literature.

  • Some authors interchange IPPB with IPPV. B indicates the patient is spontaneously breathing while V indicates ventilation via intratracheal intubation.
  • Some authors interchange IPPB and IPPV with bilevel PAP as done in a recent randomized controlled trial.[5]
  • Some authors interchange bilevel PAP with BiPAP. The latter is a specific brand of a bilevel PAP ventilator.

Supportive measures

Humidification

Sedation

Although intratracheal intubation frequently involves sedating patients, continuous sedation may prolong intubation.[6]

Antipsychotic agents to reduce the number of days mechanically ventilated patients were alive without delirium[7]
Drug Number of days
Haloperidol 14.0
Ziprasidone 15.0
Placebo 12.5
P = 0.66

Antipsychotic agents, in a small study, found that an average of 15 mgs per day of haloperidol and 113 mg per day of ziprasidone increased akathisia (see table for benefits which did not have statistical significance).[7]

Effectiveness

Immediate information, especially in emergency situations, comes from pulse oximetry and capnography.

Chronic obstructive pulmonary disease

All types of noninvasive ventilation studied through 2003 may help respiratory insufficiency due to chronic obstructive pulmonary disease according to systematic reviews[8][9] of randomized controlled trials[10][11], especially if the exacerbations are severe[12]. In one trial[10]:

  • Patients were included if PaCO2 was greater than 45 mm Hg.
  • Bilevel PAP was started at:
    • Inspiratory pressure 10 cm H20
    • Expiratory pressure 4 cm H20
    • Encouraged for up to:
      • Day 1: As much as tolerated
      • Day 2: 16 hours
      • Day 3: 12 hours
  • Inspiratory pressure was increased by 5 cm H20 as needed up to 20 H20 as tolerated.

Heart failure

Noninvasive ventilation may help treat respiratory insufficiency due to heart failure, but the optimal mode of noninvasive ventilation is not clear. A systematic review found that CPAP may be better than bilevel PAP.[13] However, in a more recent randomized controlled trial of respiratory insufficiency due to heart failure, neither CPAP or bilevel PAP reduced mortality as compared to standard oxygen therapy; however, both of the noninvasive methods provided similar symptomatic and metabolic improvement.[5] In this trial CPAP was started at 5 cm of water and increased as needed to 15 cm of water. Bilevel PAP was started at an inspiratory positive airway pressure of 8 cm of water and an expiratory positive airway pressure of 4 cm of water and was increased as needed to an inspiratory pressure of 20 cm of water and expiratory pressure of 10 cm of water.[5]

Weaning from ventilation

References

  1. Anonymous (2024), Artificial respiration (English). Medical Subject Headings. U.S. National Library of Medicine.
  2. Wharton NM, Gibbison B, Gabbott DA, Haslam GM, Muchatuta N, Cook TM (June 2008). "I-gel insertion by novices in manikins and patients". Anaesthesia. DOI:10.1111/j.1365-2044.2008.05542.x. PMID 18557971. Research Blogging.
  3. Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD et al. (2010). "Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis.". JAMA 303 (9): 865-73. DOI:10.1001/jama.2010.218. PMID 20197533. Research Blogging.
  4. Talmor D, Sarge T, Malhotra A, et al (November 2008). "Mechanical ventilation guided by esophageal pressure in acute lung injury". N. Engl. J. Med. 359 (20): 2095–104. DOI:10.1056/NEJMoa0708638. PMID 19001507. Research Blogging.
  5. 5.0 5.1 5.2 Gray A, Goodacre S, Newby DE, Masson M, Sampson F, Nicholl J (July 2008). "Noninvasive ventilation in acute cardiogenic pulmonary edema". N. Engl. J. Med. 359 (2): 142–51. DOI:10.1056/NEJMoa0707992. PMID 18614781. Research Blogging.
  6. Strøm T, Martinussen T, Toft P (2010). "A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial.". Lancet 375 (9713): 475-480. DOI:10.1016/S0140-6736(09)62072-9. PMID 20116842. Research Blogging.
  7. 7.0 7.1 Girard TD, Pandharipande PP, Carson SS, Schmidt GA, Wright PE, Canonico AE et al. (2010). "Feasibility, efficacy, and safety of antipsychotics for intensive care unit delirium: the MIND randomized, placebo-controlled trial.". Crit Care Med 38 (2): 428-37. PMID 20095068. Cite error: Invalid <ref> tag; name "pmid20095068" defined multiple times with different content
  8. Ram FS, Picot J, Lightowler J, Wedzicha JA (2004). "Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chronic obstructive pulmonary disease.". Cochrane Database Syst Rev (3): CD004104. DOI:10.1002/14651858.CD004104.pub3. PMID 15266518. Research Blogging. Review in: Evid Based Nurs. 2005 Jan;8(1):22
  9. Hess DR (July 2004). "The evidence for noninvasive positive-pressure ventilation in the care of patients in acute respiratory failure: a systematic review of the literature". Respir Care 49 (7): 810–29. PMID 15222912[e]
  10. 10.0 10.1 Plant PK, Owen JL, Elliott MW (2000). "Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomised controlled trial.". Lancet 355 (9219): 1931-5. PMID 10859037.
  11. Brochard L, Mancebo J, Wysocki M, Lofaso F, Conti G, Rauss A et al. (1995). "Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease.". N Engl J Med 333 (13): 817-22. PMID 7651472.
  12. Keenan SP, Sinuff T, Cook DJ, Hill NS (June 2003). "Which patients with acute exacerbation of chronic obstructive pulmonary disease benefit from noninvasive positive-pressure ventilation? A systematic review of the literature". Ann. Intern. Med. 138 (11): 861–70. PMID 12779296[e]
  13. Pang D, Keenan SP, Cook DJ, Sibbald WJ (October 1998). "The effect of positive pressure airway support on mortality and the need for intubation in cardiogenic pulmonary edema: a systematic review". Chest 114 (4): 1185–92. PMID 9792593[e]

External links