Brain evolution/Bibliography: Difference between revisions
Jump to navigation
Jump to search
imported>Daniel Mietchen (+one) |
imported>Daniel Mietchen (+one) |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
*{{CZ:Ref:Isler 2009 Why are there so few smart mammals (but so many smart birds)?}} | |||
*{{:CZ:Ref:DOI:10.1007/s00429-008-0198-9}} | *{{:CZ:Ref:DOI:10.1007/s00429-008-0198-9}} | ||
*{{CZ:Ref:Abdel-Mannan 2008 Evolution of cortical neurogenesis}} | *{{CZ:Ref:Abdel-Mannan 2008 Evolution of cortical neurogenesis}} |
Revision as of 05:39, 15 January 2009
- Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.
- Isler, K. & C.P. Van Schaik (2009), "Why are there so few smart mammals (but so many smart birds)?", Biology Letters: in press, DOI:10.1098/rsbl.2008.0469 [e]
- Builds on the expensive tissue hypothesis proposed by Aiello & Wheeler (1995) and provides evidence that the maximum rate of population increase, as defined by Cole (1954), is correlated negatively with brain size in mammals and birds, as long as parental care is not provided (and thus the energetic costs of feeding borne) by the mothers alone. Predicts that such allomaternal care increases the "maximum viable brain size" in a given family and that brain size evolution is strongly coupled to mass extinction events.
- Sherwood, C.C.; C.D. Stimpson & C. Butti et al. (2008), "Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals", Brain structure & function: in press, DOI:10.1007/s00429-008-0198-9 [e]
- Abdel-Mannan, O.; A.F.P. Cheung & Z. Molnár (2008), "Evolution of cortical neurogenesis", Brain Research Bulletin 75 (2-4): 398–404, DOI:10.1016/j.brainresbull.2007.10.047 [e]
- Ghika, J. (2008), "Paleoneurology: Neurodegenerative diseases are age-related diseases of specific brain regions recently developed by homo sapiens", Medical Hypotheses 71: 788-801, DOI:10.1016/j.mehy.2008.05.034 [e]
- Fitch, W. T. (2008), "Glossogeny and phylogeny: cultural evolution meets genetic evolution", Trends in Genetics 24 (8): 373–374, DOI:10.1016/j.tig.2008.05.003
- Sherwood, C.C.; Subiaul, F.; Zawidzki, T. (2008). "A natural history of the human mind: tracing evolutionary changes in brain and cognition". Journal of Anatomy 212 (4): 426-454. DOI:10.1111/j.1469-7580.2008.00868.x. Research Blogging.
- Vallender, E.J.; N. Mekel-Bobrov & B.T. Lahn (2008), "Genetic basis of human brain evolution", Trends in Neurosciences 31: 637, DOI:10.1016/j.tins.2008.08.010 [e]
- A brief and balanced overview over the genetic mechanisms currently deemed relevant for the evolution of the human brain, along with pointers to some related methodological issues.
- CZ:Ref:Vallender2008gbh/Comment1
- Emes, R.D.; Pocklington, A.J.; Anderson, C.N.G.; Bayes, A.; Collins, M.O.; Vickers, C.A.; Croning, M.D.R.; Malik, B.R.; Choudhary, J.S.; Armstrong, J.D.; Others, (2008). "Evolutionary expansion and anatomical specialization of synapse proteome complexity". Nature Neuroscience (6): pages to be defined. DOI:10.1038/nn.2135. Research Blogging.
- Tartarelli, G. & M. Bisconti (2007), "Trajectories and Constraints in Brain Evolution in Primates and Cetaceans", Human Evolution 21 (3): 275–287, DOI:10.1007/s11598-006-9027-4
- Molnár, Z.; C. Métin & A. Stoykova et al. (2006), "Comparative aspects of cerebral cortical development", Eur J Neurosci 23 (4): 921–934, DOI:10.1111/j.1460-9568.2006.04611.x [e]
- Jaaro, H. & M. Fainzilber (2006), "Building Complex Brains-Missing Pieces in an Evolutionary Puzzle", Brain Behav Evol 68 (3): 191–195, DOI:10.1159/000094088 [e]
- Shoshani, J.; W.J. Kupsky & G.H. Marchant (2006), "Elephant brain Part I: Gross morphology, functions, comparative anatomy, and evolution", Brain Research Bulletin 70 (2): 124–157, DOI:10.1016/j.brainresbull.2006.03.016
- Pollard, Katherine S.; Sofie R. Salama & Nelle Lambert et al. (2006), "An RNA gene expressed during cortical development evolved rapidly in humans", Nature 443 (7108): 167-172, DOI:10.1038/nature05113 [e]
- Marino, L. (2006), "Absolute brain size: Did we throw the baby out with the bathwater?", Proceedings of the National Academy of Sciences 103 (37): 13563-13564, DOI:10.1073/pnas.0606337103 [e]
- Sherwood, C.C.; C.D. Stimpson & M.A. Raghanti et al. (2006), "Evolution of increased glia-neuron ratios in the human frontal cortex", Proc Natl Acad Sci USA 103 (37): 13606–13611, DOI:10.1073/pnas.0605843103 [e]
- Provides comparative histological data on the glia-neuron ratios in prefrontal area 9L of the neocortex in 18 anthropoid primate species and on the allometric scaling of this ratio with brain size, concluding that the value in humans is well within the range allometrically expected for an anthropoid primate with our brain size.
- Gomez, J.C. (2005), "Species comparative studies and cognitive development", Trends Cogn Sci 9 (3): 118–125, DOI:10.1016/j.tics.2005.01.004 [e]
- Carroll, S.B. (2005). "Evolution at two levels: on genes and form". PLoS Biol 3 (7): e245. DOI:10.1371/journal.pbio.0030245. Research Blogging.
- Jarvis, E.D.; Güntürkün, O.; Bruce, L.; Csillag, A.; Karten, H.; Kuenzel, W.; Medina, L.; Paxinos, G.; Perkel, D.J.; Shimizu, T.; Others, (2005). "Avian brains and a new understanding of vertebrate brain evolution". Nature Reviews Neuroscience 6: 151-159. DOI:10.1038/nrn1606. Research Blogging.
- Reiner, A. (2005). "A new avian brain nomenclature: Why, how and what". Brain Research Bulletin 66 (4-6): 317-331. DOI:10.1016/j.brainresbull.2005.05.007. Research Blogging.
- Roth, G.; Dicke, U. (2005). "Evolution of the brain and intelligence". Trends in Cognitive Sciences 9 (5): 250-257. DOI:10.1016/j.tics.2005.03.005. Research Blogging. [e]
- Bush, E.C.; Allman, J.M. (2003), "The Scaling of White Matter to Gray Matter in Cerebellum and Neocortex", Brain Behav Evol 61 (1): 1–5, DOI:10.1159/000068880
- Harrison, K.H.; Hof, P.R.; Wang, S.S. (2002), "Scaling laws in the mammalian neocortex: Does form provide clues to function?", J Neurocytol 31 (3-5): 289–98, DOI:10.1023/A:1024178127195 [e]
- Marino, L. (2002), "Convergence of complex cognitive abilities in cetaceans and primates", Brain, behavior and evolution 59 (1-2): 21-32, DOI:10.1159/000063731 [e]
- Menzel, R. & M. Giurfa (2001), "Cognitive architecture of a mini-brain: the honeybee", Trends in Cognitive Sciences 5 (2): 62–71, DOI:10.1016/S1364-6613(00)01601-6 [e]
- Clark, D.A.; P.P. Mitra & S.S. Wang (2001), "Scalable architecture in mammalian brains", Nature 411 (6834): 189–93, DOI:10.1038/35075564 [e]
"...among quantitative brain parameters examined to date, only the cerebrotype provides a measure of architecture that correlates with date of divergence of advanced primates."
- Changizi, M.A. (2001), "Principles underlying mammalian neocortical scaling", Biol Cybern 84 (3): 207–15, DOI:10.1007/s004220000205
- Supèr, H.; Uylings, H.B.M. (2001), "The Early Differentiation of the Neocortex: a Hypothesis on Neocortical Evolution", Cerebral Cortex 11 (12): 1101–1109, DOI:10.1093/cercor/11.12.1101
- Katz, P.S. & R.M. Harris-Warrick (1999), "The evolution of neuronal circuits underlying species-specific behavior", Current Opinion in Neurobiology 9 (5): 628–633, DOI:10.1016/S0959-4388(99)00012-4 [e]
- Rilling, J.K. & T.R. Insel (1999), "The primate neocortex in comparative perspective using magnetic resonance imaging", Journal of Human Evolution 37 (2): 191–223, DOI:10.1006/jhev.1999.0313 [e]
- Kornack, David R. & Pasko Rakic (1998), "Changes in cell-cycle kinetics during the development and evolution of primate neocortex", Proceedings of the National Academy of Sciences of the United States of America 95 (3): 1242–1246, DOI:10.1073/pnas.95.3.1242 [e]
In comparison to rodents, "...substantially more total rounds of cell division elapsed during the prolonged neurogenetic period of the monkey cortex, providing a basis for increased cell production."
- Henneberg, M. (1998), "Evolution of the Human Brain: is Bigger Better?", Clinical and Experimental Pharmacology and Physiology 25 (9): 745–749, DOI:10.1111/j.1440-1681.1998.tb02289.x [e]
- Aiello, L.C. & P. Wheeler (1995), "The Expensive-Tissue Hypothesis: the Brain and the Digestive System in Human and Primate Evolution", Current Anthropology 36 (2): 199-221, DOI:10.1086/204350 [e]
- Proposed that the energetic costs of the resting metabolism of different organs within the body have to be balanced. Specifically, such a trade-off is hypothesized to have governed the increasing brain size during primate and human evolution, in concert with a decrease in the amount of digestive tissue. For a critique, see Hladik et al. (1999).
- Kaas, J.H. (1989), "The evolution of complex sensory systems in mammals", Journal of Experimental Biology 146 (1): 165–176
- Frank, E. & P. Wenner (1993), "Environmental specification of neuronal connectivity", Neuron 10 (5): 779–785, DOI:10.1016/0896-6273(93)90194-V [e]
- Deacon, Terrence W. (1990), "Rethinking Mammalian Brain Evolution", American Zoologist 30 (3): 629, DOI:10.1093/icb/30.3.629 [e]
- Jackson, J. Hughlings (1887), "Remarks on Evolution and Dissolution of the Nervous System", The British Journal of Psychiatry 33 (141): 25-48, DOI:10.1192/bjp.33.141.25