Eigenvalue: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Michael Underwood
No edit summary
imported>Michael Underwood
No edit summary
Line 1: Line 1:
In [[linear algebra]] an '''eigenvalue''' of a (square) [[matrix]] <math>A</math> is a number <math>\lambda</math> that satisfies the eigenvalue equation,
In [[linear algebra]] an '''eigenvalue''' of a (square) [[matrix]] <math>A</math> is a number <math>\lambda</math> that satisfies the eigenvalue equation,
:<math>\text{det}(A-\lambda I)=0\ ,</math>
:<math>\text{det}(A-\lambda I)=0\ ,</math>
where <math>I</math> is the [[identity matrix]] of the same [[dimension]] as <math>A</math>
where det means the [[determinant]], <math>I</math> is the [[identity matrix]] of the same [[dimension]] as <math>A</math>,
and in general <math>\lambda</math> can be [[complex number|complex]].
and in general <math>\lambda</math> can be [[complex number|complex]].
The origin of this equation is the [[eigenvalue problem]], which is to find the eigenvalues and associated [[eigenvectors]] of <math>A</math>.
The origin of this equation is the [[eigenvalue problem]], which is to find the eigenvalues and associated [[eigenvectors]] of <math>A</math>.
Line 29: Line 29:
:<math>\text{det}(A-\lambda I)=0\ ,</math>
:<math>\text{det}(A-\lambda I)=0\ ,</math>
which is the eigenvalue equation stated above.
which is the eigenvalue equation stated above.
==A more technical approach==
So far we have looked eigenvalues in terms of square matrices.  As usual in [[mathematics]] though we like things to be as general as possible, since then anything we prove will be true in as many different applications as possible.  So instead we can define eigenvalues in the following way.
Definition: Let <math>V</math> be a [[vector space]] over a [[field]] <math>F</math>, and let <math>A:V\to V</math> be a [[linear map]].  An '''eigenvalue''' associated with <math>A</math> is an element <math>\lambda\in F</math> for which there exists a vector <math>\vec{v}\in V</math> such that
:<math>A(\vec{v})=\lambda\vec{v}\ .</math>
Then <math>\vec{v}</math> is called the '''eigenvector''' of <math>A</math> associated with <math>\lambda</math>.

Revision as of 17:10, 3 October 2007

In linear algebra an eigenvalue of a (square) matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is a number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} that satisfies the eigenvalue equation,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det}(A-\lambda I)=0\ ,}

where det means the determinant, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I} is the identity matrix of the same dimension as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} , and in general Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} can be complex. The origin of this equation is the eigenvalue problem, which is to find the eigenvalues and associated eigenvectors of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} . That is, to find a number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} and a vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} that together satisfy

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\vec{v}=\lambda\vec{v}\ .}

What this equation says is that even though Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is a matrix its action on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} is the same as multiplying it by the number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} . This means that the vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} and the vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\vec{v}} are parallel (or anti-parallel if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} is negative). Note that generally this will not be true. This is most easily seen with a quick example. Suppose

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=\begin{pmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{pmatrix}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}=\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\ .}

Then their matrix product is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\vec{v}=\begin{pmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{pmatrix}\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} =\begin{pmatrix}a_{11}v_1+a_{12}v_2 \\ a_{21}v_1+a_{22}v_2 \end{pmatrix}}

whereas the scalar product is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda\vec{v}=\begin{pmatrix} \lambda v_1 \\ \lambda v_2 \end{pmatrix}\ .}

Obviously then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\vec{v}\neq \lambda\vec{v}} unless Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda v_1 = a_{11}v_1+a_{12}v_2} and simultaneously Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda v_2 = a_{21}v_1+a_{22}v_2} , and it is easy to pick numbers for the entries of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} such that this cannot happen for any value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} .

The eigenvalue equation

So where did the eigenvalue equation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det}(A-\lambda I)=0} come from? Well, we assume that we know the matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} and want to find a number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} and a non-zero vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} so that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\vec{v}=\lambda\vec{v}} . (Note that if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}=\vec{0}} then the equation is always true, and therefore uninteresting.) So now we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\vec{v}-\lambda\vec{v}=\vec{0}} . It doesn't make sense to subtract a number from a matrix, but we can factor out the vector if we first multiply the right-hand term by the identity, giving us

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (A-\lambda I)\vec{v}=\vec{0}\ .}

Now we have to remember the fact that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A-\lambda I} is a square matrix, and so it might be invertible. If it was invertible then we could simply multiply on the left by its inverse to get

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}=(A-\lambda I)^{-1}\vec{0}=\vec{0}}

but we have already said that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} can't be the zero vector! The only way around this is if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A-\lambda I} is in fact non-invertible. It can be shown that a square matrix is non-invertible if and only if its determinant is zero. That is, we require

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det}(A-\lambda I)=0\ ,}

which is the eigenvalue equation stated above.

A more technical approach

So far we have looked eigenvalues in terms of square matrices. As usual in mathematics though we like things to be as general as possible, since then anything we prove will be true in as many different applications as possible. So instead we can define eigenvalues in the following way.

Definition: Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} be a vector space over a field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} , and let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A:V\to V} be a linear map. An eigenvalue associated with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is an element Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda\in F} for which there exists a vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}\in V} such that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\vec{v})=\lambda\vec{v}\ .}

Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} is called the eigenvector of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} associated with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} .