Life/Bibliography: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Anthony.Sebastian
(→‎Books: annotate, relocate item)
imported>Anthony.Sebastian
(→‎Books: more annotation)
Line 2: Line 2:
==Books==
==Books==
*Schrödinger E (1944-2000) ''What is Life?'' Cambridge University Press (Canto). ISBN 0-521-42708-8 [http://dieoff.org/page150.htm Chapter 6: Order, Disorder and Entropy] ''(Prediction of hereditary molecule like a coded periodic crystal — Watson claims inspiration — Stresses open thermodynamic systems key to life.)''
*Schrödinger E (1944-2000) ''What is Life?'' Cambridge University Press (Canto). ISBN 0-521-42708-8 [http://dieoff.org/page150.htm Chapter 6: Order, Disorder and Entropy] ''(Prediction of hereditary molecule like a coded periodic crystal — Watson claims inspiration — Stresses open thermodynamic systems key to life.)''
*Margulis L, Sagan D (1995) ''What is Life?'' University of California Press. ISBN 978-0-520-22021-8.
*Margulis L, Sagan D (2000) [http://www.ucpress.edu/books/pages/8733.php ''What is Life?''] University of California Press. (pbk) ISBN 978-0-520-22021-8.
:*'''<U>Publisher's Description:</U>''' Half a century ago, before the discovery of DNA, the Austrian physicist and philosopher Erwin Schrödinger inspired a generation of scientists by rephrasing the fascinating philosophical question: What is life? Using their expansive understanding of recent science to wonderful effect, acclaimed authors Lynn Margulis and Dorion Sagan revisit this timeless question in a fast-moving, wide-ranging narrative that combines rigorous science with philosophy, history, and poetry. The authors move deftly across a dazzling array of topics—from the dynamics of the bacterial realm, to the connection between sex and death, to theories of spirit and matter. They delve into the origins of life, offering the startling suggestion that life—not just human life—is free to act and has played an unexpectedly large part in its own evolution. Transcending the various formal concepts of life, this captivating book offers a unique overview of life's history, essences, and future.
:*'''<u>UC Press Description:</U>''' Half a century ago, before the discovery of DNA, the Austrian physicist and philosopher Erwin Schrödinger inspired a generation of scientists by rephrasing the fascinating philosophical question: What is life? Using their expansive understanding of recent science to wonderful effect, acclaimed authors Lynn Margulis and Dorion Sagan revisit this timeless question in a fast-moving, wide-ranging narrative that combines rigorous science with philosophy, history, and poetry. The authors move deftly across a dazzling array of topics—from the dynamics of the bacterial realm, to the connection between sex and death, to theories of spirit and matter. They delve into the origins of life, offering the startling suggestion that life—not just human life—is free to act and has played an unexpectedly large part in its own evolution. Transcending the various formal concepts of life, this captivating book offers a unique overview of life's history, essences, and future.
:*'''<u>Note:</u>''' Hardcover original from Simon & Schuster, 1995, out-of-print. ISBN 978-0684810874.
:*'''<u>From inside flap hardcover edition:</u>''' "In What Is Life? Margulis and Sagan have rephrased the answer to Schrödinger's brilliant question by means of a new and spirited explanation of the emergent levels of biological organization. . . . Theirs is a conceptual framework likely to influence future introductions to biology." --E. O. Wilson
*Kaneko K (2006) ''Life: An Introduction to Complex Systems Biology.'' Springer, Berlin ISBN 3-540-32666-9
*Kaneko K (2006) ''Life: An Introduction to Complex Systems Biology.'' Springer, Berlin ISBN 3-540-32666-9
*Dill KA, Bromberg S, Stigter D (2003) ''Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology.'' Garland Science, New York. ISBN 0-8153-2051-5
*Dill KA, Bromberg S, Stigter D (2003) ''Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology.'' Garland Science, New York. ISBN 0-8153-2051-5

Revision as of 20:48, 22 January 2009

This article has a Citable Version.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Gallery [?]
Signed Articles [?]
Addendum [?]
 
A list of key readings about Life.
Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.

Books

  • UC Press Description: Half a century ago, before the discovery of DNA, the Austrian physicist and philosopher Erwin Schrödinger inspired a generation of scientists by rephrasing the fascinating philosophical question: What is life? Using their expansive understanding of recent science to wonderful effect, acclaimed authors Lynn Margulis and Dorion Sagan revisit this timeless question in a fast-moving, wide-ranging narrative that combines rigorous science with philosophy, history, and poetry. The authors move deftly across a dazzling array of topics—from the dynamics of the bacterial realm, to the connection between sex and death, to theories of spirit and matter. They delve into the origins of life, offering the startling suggestion that life—not just human life—is free to act and has played an unexpectedly large part in its own evolution. Transcending the various formal concepts of life, this captivating book offers a unique overview of life's history, essences, and future.
  • Note: Hardcover original from Simon & Schuster, 1995, out-of-print. ISBN 978-0684810874.
  • From inside flap hardcover edition: "In What Is Life? Margulis and Sagan have rephrased the answer to Schrödinger's brilliant question by means of a new and spirited explanation of the emergent levels of biological organization. . . . Theirs is a conceptual framework likely to influence future introductions to biology." --E. O. Wilson
  • Kaneko K (2006) Life: An Introduction to Complex Systems Biology. Springer, Berlin ISBN 3-540-32666-9
  • Dill KA, Bromberg S, Stigter D (2003) Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology. Garland Science, New York. ISBN 0-8153-2051-5
  • Strogatz SH (2003) Sync: The Emerging Science of Spontaneous Order. Theia, New York ISBN 0-7868-6844-9
  • Buchanan M (2002) Nexus: Small Worlds and the Groundbreaking Science of Networks. W.W. Norton, New York ISBN 0-393-04153-0
  • Hoagland M, Dodson B, Hauck J (2001) Exploring the Way Life Works: The Science of Biology. Jones and Bartlett Publishers, Inc, Mississauga, Ontario ISBN 0-7637-1688-X (For young people. An illustrated text.)
  • Solé R, Goodwin B (2000) Signs of Life: How Complexity Pervades Biology. Basic Books, Perseus Books Group, New York ISBN 0-465-01928-5
  • Loewenstein WR (2000) The Touchstone of life: Molecular Information, Cell Communication, and the Foundations of Life. Oxford University Press ISBN 0-19-514057-5 Book Review and Chapter One
  • Hoagland M, Dodson B (1998) The Way Life Works: The Science Lovers Illustrated Guide to How Life Grows, Develops, Reproduces, and Gets Along. Three Rivers Press, New York ISBN 0-8129-2888-1 (For young people. An illustrated text.)
  • Rosen R. (1991) Life Itself: A Comprehensive Inquiry Into The Nature, Origin, And Fabrication Of Life. Columbia University Press, New York. ISBN 0-231-07565-0
  • Kauffman SA. (1993) The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York. ISBN 0195058119
  • Kauffman S. (1995) At Home in the Universe: The Search for Laws of Self-Organization and Complexity. Oxford University Press, New York. ISBN 0195095995
  • Mayr E. (1997) Evolution and the Diversity of Life: Selected Essays. The Belknap Press of Harvard University Press, Cambridge, Massachusetts.
  • Holland JH. (1998) Emergence: From Chaos to Order. Perseus Books, Cambridge. ISBN 0-7382-0142-1
  • Haynie DT. (2001) Biological Thermodynamics. Cambridge University Press, Cambridge. ISBN 13-978-0-521-79549-4; 10-0-521-79165-0
  • Harold FM. (2001) The Way of the Cell: Molecules, Organisms, and the Order of Life. Oxford University Press, Oxford. ISBN 0195135121
  • Kirschner MW, Gerhart JC, Norton J. (2005) The Plausibility of Life: Resolving Darwin's Dilemma. Yale University Press, New Haven. ISBN 13-978-0-300-11977-0; 10-0-300-11977-1
  • Reid RGB. (2007) Biological Emergences: Evolution by Natural Experiment. A Bradford Book, Cambridge . ISBN 10: 0-262-18257-2
  • De Duve C (2004) Life Evolving: Molecules, Mind, and Meaning. Oxford University Press. New York ISBN 0195156056

Articles

  • Abstract: Maximum life span differences among animal species exceed life span variation achieved by experimental manipulation by orders of magnitude. The differences in the characteristic maximum life span of species was initially proposed to be due to variation in mass-specific rate of metabolism. This is called the rate-of-living theory of aging and lies at the base of the oxidative-stress theory of aging, currently the most generally accepted explanation of aging. However, the rate-of-living theory of aging while helpful is not completely adequate in explaining the maximum life span. Recently, it has been discovered that the fatty acid composition of cell membranes varies systematically between species, and this underlies the variation in their metabolic rate. When combined with the fact that 1) the products of lipid peroxidation are powerful reactive molecular species, and 2) that fatty acids differ dramatically in their susceptibility to peroxidation, membrane fatty acid composition provides a mechanistic explanation of the variation in maximum life span among animal species. When the connection between metabolic rate and life span was first proposed a century ago, it was not known that membrane composition varies between species. Many of the exceptions to the rate-of-living theory appear explicable when the particular membrane fatty acid composition is considered for each case. Here we review the links between metabolic rate and maximum life span of mammals and birds as well as the linking role of membrane fatty acid composition in determining the maximum life span. The more limited information for ectothermic animals and treatments that extend life span (e.g., caloric restriction) are also reviewed.
  • Abstract: The field of self-organization in nonequilibrium chemical systems comprises the study of dynamical phenomena in chemically reacting systems far from equilibrium. Systematic exploration of this area began with investigations of the temporal behavior of the Belousov-Zhabotinsky oscillating reaction, discovered accidentally in the former Soviet Union in the 1950s. The field soon advanced into chemical waves in excitable media and propagating fronts. With the systematic design of oscillating reactions in the 1980s and the discovery of Turing patterns in the 1990s, the scope of these studies expanded dramatically. The articles in this Focus Issue provide an overview of the development and current state of the field.
  • Excerpt: Scientists care about definitions, so they convene conferences to discuss the matter. A recent meeting called "What is life?" attracted a hundred scientists, who mingled with assorted philosophers and theologians to debate the issue. Opinions differed dramatically, but the most contentious debates occurred within the scientific ranks. One very senior expert on lipid molecules argued that life began with the first semi-permeable lipid membrane. An equally august authority on metabolism countered that life began with the first self-sustaining metabolic cycle. On the contrary, claimed several molecular biologists, the first living entity must have been an RNA-like genetic system that carried and duplicated biological information. One mineralogist even proposed the decidedly minority view that life began not as an organic entity, but as a self-replicating mineral.
  • Abstract: DNA and RNA polymerases active on bacterial and human genomes in the crowded environment of a cell are modeled as beads spaced along a string. Aggregation of the large polymerizing complexes increases the entropy of the system through an increase in entropy of the many small crowding molecules; this occurs despite the entropic costs of looping the intervening DNA. Results of a quantitative cost/benefit analysis are consistent with observations that active polymerases cluster into replication and transcription “factories” in both pro- and eukaryotes. We conclude that the second law of thermodynamics acts through nonspecific entropic forces between engaged polymerases to drive the self-organization of genomes into loops containing several thousands (and sometimes millions) of basepairs.
  • Excerpt: The organization of energy flow through metabolic pathways allows us to recognize many forms of continuity absent in conventional thinking. We have good reason to believe that the first emergent metabolism was similar in many respects to modern universal core anabolism. Metabolism itself becomes a bridge from driven geochemistry to the foundations of cell physiology and trophic ecology. If our story is correct, the thermodynamic forces responsible for the emergence of anabolism within prebiotic chemistry have ensured its stability throughout the ensuing history of life. Energy flow embeds life within the geosphere not just mechanistically but conceptually as an inevitable form of driven geochemical order.
  • Scheffer, M. & E. H. van Nes (2006), "Self-organized similarity, the evolutionary emergence of groups of similar species", Proceedings of the National Academy of Sciences 103 (16): 6230-6235, DOI:10.1073/pnas.0508024103 [e]
  • Abstract: Ecologists have long been puzzled by the fact that there are so many similar species in nature. Here we show that self-organized clusters of look-a-likes may emerge spontaneously from coevolution of competitors. The explanation is that there are two alternative ways to survive together: being sufficiently different or being sufficiently similar. Using a model based on classical competition theory, we demonstrate a tendency for evolutionary emergence of regularly spaced lumps of similar species along a niche axis. Indeed, such lumpy patterns are commonly observed in size distributions of organisms ranging from algae, zooplankton, and beetles to birds and mammals, and could not be well explained by earlier theory. Our results suggest that these patterns may represent self-constructed niches emerging from competitive interactions. A corollary of our findings is that, whereas in species-poor communities sympatric speciation and invasion of open niches is possible, species-saturated communities may be characterized by convergent evolution and invasion by look-a-likes.
  • Walsh, D. (2006), "Organisms as natural purposes: the contemporary evolutionary perspective", Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 37: 771-791, DOI:10.1016/j.shpsc.2006.09.009 [e]
  • Abstract: Kant’s conception of organisms as natural purposes raises a challenge to the adequacy of mechanistic explanation in biology. Certain features of organisms appear to be inexplicable by appeal to mechanical law alone. Some biological phenomena, it seems, can only be accounted for teleologically. Contemporary evolutionary biology has by and large ignored this challenge. It is widely held that Darwin’s theory of natural selection gives us an adequate, wholly mechanical account of the nature of organisms. In contemporary biology, the category of the organism plays virtually no explanatory role. Contemporary evolutionary biology is a science of sub-organismal entities—replicators. I argue that recent advances in developmental biology demonstrate the inadequacy of sub-organismal mechanism. The category of the organism, construed as a ‘natural purpose’ should play an ineliminable role in explaining ontogenetic development and adaptive evolution. According to Kant the natural purposiveness of organisms cannot be demonstrated to be an objective principle in nature, nor can purposiveness figure in genuine explain. I attempt to argue, by appeal to recent work on self-organization, that the purposiveness of organisms is a natural phenomenon, and, by appeal to the apparatus of invariance explanation, that biological purposiveness provides genuine, ineliminable biological explanations.
  • The Seven Pillars: Program (DNA), Improvisation (evolution), Compartmentalization (boundary with environment), Energy (the flow of energy through the system), Regeneration (re-synthesis of parts), Adaptability (‘behavioral’ responsiveness), Seclusion (metabolic pathways do not have their privacy invaded).
  • Excerpt: In What Is Life?, Schrödinger focused attention on two topics in biology: (a) the nature of the hereditary material and (b) the thermodynamics of living systems. In a review of the state of knowledge of genetics at that time,

Interviews and Commentaries