User:Mark Widmer/sandbox: Difference between revisions

From Citizendium
Jump to navigation Jump to search
(→‎MLB: Added history of league structure and division.)
Line 24: Line 24:
* Up through 1968: No divisions. The regular-season winner of each league was the league champion and was said to have "won the pennant."
* Up through 1968: No divisions. The regular-season winner of each league was the league champion and was said to have "won the pennant."
* 1969-1984: Two divisions, Eastern and Western. The regular-season winner of each division met in a best-of-five playoff, the "League Championship Series" (LCS, or ALCS and NLCS), to determine the pennant winner.
* 1969-1984: Two divisions, Eastern and Western. The regular-season winner of each division met in a best-of-five playoff, the "League Championship Series" (LCS, or ALCS and NLCS), to determine the pennant winner.
* 1981 only: Owing to a players' strike in midseason, the teams with the best pre-strike and post-strike records in each division met in a best-of-five playoff, the "League Division Series."
* 1985-19xx: Still two divisions. LCS expanded to best-of-seven format.
* 1985-19xx: Still two divisions. LCS expanded to best-of-seven format.
* 1994 only: No postseason due to players' strike.
* ?: Three divisions, Eastern, Central, and Western. Playoffs included the regular-season winner of each division, plus the non-division-winner with the best record. First round of playoffs, the "American/National League Division Series" (ALDS, NLDS), was best-of-xxx format. LCS (still) best-of-seven format?
* ?: Three divisions, Eastern, Central, and Western. Playoffs included the regular-season winner of each division, plus the non-division-winner with the best record. First round of playoffs, the "American/National League Division Series" (ALDS, NLDS), was best-of-xxx format. LCS (still) best-of-seven format?
* ?:
* ?:

Revision as of 18:30, 27 December 2022

Sandbox. Mark Widmer (talk) 01:17, 5 August 2021 (UTC)

MLB

For "Leagues" section at end.

Current wording:

Throughout the years, both leagues have seen a number of teams come and go. When the National League was formed, it had eight teams, only four of which are still in existence and in the same city that they started in. When the American League was formed, it also had eight teams, seven of which are still where they started.

New draft. Summary: Added starting years for NL & AL. Added info on inactive major leagues.

Throughout the years, both leagues have seen a number of teams come and go. When the National League was formed in 1876, it had eight teams, only four of which are still in existence and in the same city that they started in. When the American League was formed in 1901, it also had eight teams, seven of which are still where they started. Additionally, these are not the only major leagues to have existed. The National Association predated the National League and was active from 1871 to 1875. The American Association was active from 1882 to 1891, and its champion played the National League champion in a 19th-century version of the World Series from 1884 to 1890. [1] For a complete list, see the section "Inactive Major Leagues" at the following reference. [2]

For "League Structure" section.

Summary: Added history of league structure and division.

The subdividing of the two leagues into divisions began in 19xx, with the creation of Eastern and Western divisions in each league. The leagues have used the same structure and scheduling every year as follows. [3]

  • Up through 1968: No divisions. The regular-season winner of each league was the league champion and was said to have "won the pennant."
  • 1969-1984: Two divisions, Eastern and Western. The regular-season winner of each division met in a best-of-five playoff, the "League Championship Series" (LCS, or ALCS and NLCS), to determine the pennant winner.
  • 1981 only: Owing to a players' strike in midseason, the teams with the best pre-strike and post-strike records in each division met in a best-of-five playoff, the "League Division Series."
  • 1985-19xx: Still two divisions. LCS expanded to best-of-seven format.
  • 1994 only: No postseason due to players' strike.
  • ?: Three divisions, Eastern, Central, and Western. Playoffs included the regular-season winner of each division, plus the non-division-winner with the best record. First round of playoffs, the "American/National League Division Series" (ALDS, NLDS), was best-of-xxx format. LCS (still) best-of-seven format?
  • ?:

Benchmark quantities

Heat equation

Heat_equation

Define variables when equation is used for temperature: u=temperature, k = k_therm / (c*rho)

Define variable when equation refers to diffusion: u = density???

Draft for additions to Hill_sphere New sections:

Hill sphere and L1 Lagrange point

-- added note in Formulas section

Hill sphere of the Sun

-- added to article

Hill sphere of objects that orbit Earth

The Moon -- added to article

Artificial satellites in low-Earth orbit -- added to article

L1 Lagrange point for comparable-mass objects

Usually, derivations of the L1 point assume a planetary mass that is much less than the star's mass. This no longer applies if the orbiting objects have comparable masses. This is the case for many binary star systems. For example, in the Alpha Centauri system, the stars Alpha Centauri A and B have masses that are 1.1 and 0.9 times that of the Sun, respectively, or a mass ratio of about 0.8.

For two equal-mass objects, let R be the distance between the objects. Each object is then in a circular orbit of radius R/2 about the center of mass, which is halfway between them.

Outline:

We follow the derivation for small planet/star mass ratio given at http://www.phy6.org/stargaze/Slagrang.htm, without making the small-ratio approximations that are incorporated there.

Planet/star mass ratio Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu = m/M} , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 < \mu <= 1}

Equate the gravitational force (which acts at a distance R) with the centripetal force (for a circle of radius Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R/(1+\mu)} ):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{GmM}{R^2} = \frac{m v^2}{\frac{R}{1+\mu}} = \frac{m v^2 (1+\mu)}{R}}


Mult by R/m:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{GM}{R} = (1+\mu) v^2}

Substitute for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v = \frac{2 \pi \frac{R}{1+\mu}}{T}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{GM}{R} = \frac{(1+\mu) 4 \pi^2 R^2}{T^2 (1+\mu)^2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{GM}{R^3} = \frac{4 \pi^2}{T^2 (1+\mu)}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{GM}{R^3} = \frac{4 \pi^2}{(1+\mu) T^2} }

An small-mass object at the L1 point, a distance r from object m, will have an orbit with radius Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{R}{1+\mu}-r} and the same period T:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{GM}{(R-r)^2} - \frac{Gm}{r^2} = \frac{v^2}{\frac{R}{1+\mu}-r} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v = \frac{2 \pi (\frac{R}{1+\mu}-r)}{T} } ,

so


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{GM}{(R-r)^2} - \frac{Gm}{r^2} = \frac{4 \pi^2 (\frac{R}{1+\mu}-r)^2}{T^2} \frac{1}{\frac{R}{1+\mu}-r} = \frac{4 \pi^2 (\frac{R}{1+\mu}-r)}{T^2} }

Since T is the same for the planet and an object at the L1 point,


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4 \pi^2}{T^2} = \frac{GM(1+\mu)}{R^3} = \frac{GM}{(R-r)^2 (\frac{R}{1+\mu}-r)} - \frac{Gm}{r^2 (\frac{R}{1+\mu}-r)} }

Divide through by GM

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(1+\mu)}{R^3} = \frac{1}{(R-r)^2 (\frac{R}{1+\mu}-r)} - \frac{\mu}{r^2 (\frac{R}{1+\mu}-r)}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(1+\mu)}{R^3}(\frac{R}{1+\mu}-r) = \frac{1}{(R-r)^2} - \frac{\mu}{r^2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{R-r(1+\mu)}{R^3} = \frac{1}{(R-r)^2} - \frac{\mu}{r^2)}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{R-r(1+\mu)}{R} \frac{(R-r)^2}{R^2} = 1 - \frac{\mu(R-r)^2}{r^2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 - \rho (1+\mu)) (1 - \rho)^2 = 1 - \mu (\frac{1}{\rho}-1)^2 }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho^2 (1 - \rho (1+\mu)) (1 - \rho)^2 = \rho^2 - \mu (1-\rho)^2 }

Didymos

Didymos

The asteroid Didymos and its smaller, satellite asteroid Dimorphos comprise a binary asteroid system within the solar system.

Pole-in-the-barn Paradox

The lack of simultaneity in special relativity is illustrated by the pole-in-the-barn paradox. The scenario includes a long, horizontal pole and a barn with both a front and a back door. The pole's length is Lp in its rest frame, and the distance between the barn's two doors is Lb < Lp. As such, when at rest the pole cannot fit inside the barn. When the pole is partially inside the barn and at rest, at least one of the two barn doors must be open, as one or possibly both ends of the pole will extend outside of the barn.

Now imagine that the pole is moving horizontally at a constant relativistic speed toward the barn, whose doors are both open. The speed is fast enough so that, in the barn's rest frame, the pole is length-contracted to Lp' < Lb. As the pole moves through the barn, there is a brief amount of time where it is completely inside the barn as seen by an observer at rest inside the barn. When the pole is completely inside the barn, the two barn doors are both briefly shut at the same time, and then reopened before the pole starts exiting the rear of the barn.

Next we look at things as observers moving with the pole. In this reference frame, the length of the barn is contracted to Lb' < Lb, which is still less than Lp. In other words, the pole is seen to be longer than the space inside the barn. But then how is it possible for the two barn doors to close without either hitting / getting hit by the pole?

This paradox is resolved by noting that, in pole's rest frame, the two doors do not get shut at the same instant. Instead, the rear door is shut and reopened before the front of the pole reaches the rear door and the rear of the pole has yet to enter the barn. A short time later, when the rear of the pole is inside the barn, the front door is shut and reopened -- and by this time the front of the pole has passed outside, beyond the rear door.

The fact that the two doors are shut and reopened at the same time in the barn's frame, but at different times in the pole's rest frame, illustrates the idea that [something about simultaneity].

Templates for Math Objects

https://en.citizendium.org/wiki/Help:Displaying_mathematical_formulas

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{R} = \frac{1}{T} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{r} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \beta \gamma \Delta \theta \pi }

text in math using mbox: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega \mbox{ is } 2\pi f }

spaces ignored if using mathrm: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega \mathrm{ is } 2\pi f }

space characters using backslash: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega \ \mbox{is} \ 2\pi f }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6.02 \times 10^{23} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle }

Non-math

6.02 x 1023

small superscript: 10² 10²³

multiplier dot used in units: kg•m/s2

°C °F

Greek characters and other math formatting:

https://en.citizendium.org/wiki/CZ:How_to_edit_an_article#Character_formatting

x² ≥ 0