Cauchy-Riemann equations: Difference between revisions
imported>Daniele Tampieri No edit summary |
imported>Daniele Tampieri m (Corrected a typo) |
||
Line 1: | Line 1: | ||
In [[complex analysis]], the '''Cauchy-Riemann equations''' are one of the of the basic objects of the theory. The [[Homogeneous equation|homogeneous]] | In [[complex analysis]], the '''Cauchy-Riemann equations''' are one of the of the basic objects of the theory. The [[Homogeneous equation|homogeneous]] form of those equations const of a system of <math>\scriptstyle 2n</math> [[partial differential equation]]s, where <math>\scriptstyle n</math> is a [[positive integer]], expressing a necessary and sufficient condition between the [[Real part|real]] and [[imaginary part]] of a [[Complex number|complex valued]] function of <math>\scriptstyle 2n</math> [[variable]]s for the given function to be a [[Holomorphic function|holomorphic one]]. These equations are sometimes referred as '''Cauchy-Riemann conditions''', '''Cauchy-Riemann operators''' or '''Cauchy-Riemann system'''. | ||
== Formal definition == | == Formal definition == |
Revision as of 12:25, 9 January 2011
In complex analysis, the Cauchy-Riemann equations are one of the of the basic objects of the theory. The homogeneous form of those equations const of a system of partial differential equations, where is a positive integer, expressing a necessary and sufficient condition between the real and imaginary part of a complex valued function of variables for the given function to be a holomorphic one. These equations are sometimes referred as Cauchy-Riemann conditions, Cauchy-Riemann operators or Cauchy-Riemann system.
Formal definition
In the following text, it is assumed that ℂn≡ℝ2n, identifying the points of the euclidean spaces on the complex and real fields as follows
The subscript is omitted when n=1.
The Cauchy-Riemann equations in ℂ (n=1)
Let f(x, y) = u(x, y) + iv(x, y) a complex valued differentiable function. Then f satisfies the homogeneous Cauchy-Riemann equations if and only if
Using Wirtinger derivatives these equation can be written in the following more compact form:
The Cauchy-Riemann equations in ℂn (n>1)
Let f(x1, y1,...,xn, yn) = u(x1, y1,...,xn, yn) + iv(x1, y1,...,xn, yn) a complex valued differentiable function. Then f satisfies the homogeneous Cauchy-Riemann equations if and only if
Again, using Wirtinger derivatives this system of equation can be written in the following more compact form:
Notations for the case n>1
In the French, Italian and Russian literature on the subject, the multi-dimensional Cauchy-Riemann system is often identified with the following notation:
The Anglo-Saxon literature (English and North American) uses the same symbol for the complex differential form related to the same operator.
References
- Hörmander, Lars (1990), An Introduction to Complex Analysis in Several Variables, North–Holland Mathematical Library, vol. 7 (3rd (Revised) ed.), Amsterdam–London–New York–Tokyo: North-Holland, Zbl 0685.32001, ISBN 0-444-88446-7 [e].