User:John R. Brews/Sample: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>John R. Brews
No edit summary
imported>John R. Brews
Line 1: Line 1:
==Liénard-Wiechert potential==
==Liénard–Wiechert potentials==


<br/>
<br/>
{{TOC|right}}
{{TOC|right}}
Define '''''&beta;''''' as:
:<math>\boldsymbol \beta =\boldsymbol v /c \ , </math>
and unit vector '''û''' as
:<math>\mathbf{\hat u } = \frac{\boldsymbol R}{R} \ , </math>
where '''''R''''' is the vector joining the observation point ''P'' to the moving charge ''q'' at the time of observation. Then the '''Liénard–Wiechert potentials''' consist of a scalar potential ''&Phi;'' and a vector potential '''''A'''''. The scalar potential is:


:<math>\Phi(\boldsymbol r , \ t) =\left. \frac{q}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )|\boldsymbol r - \boldsymbol \tilde r |}\right|_{\tilde t} =\left. \frac{q}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )R}\right|_{\tilde t} \ , </math>
where the tilde {{nowrap|‘ '''<sup>~</sup>''' ’}} denotes evaluation at the ''retarded time'' ,
:<math>\tilde t = t - \frac{\boldsymbol r - \boldsymbol r_0(\tilde t)|}{c} \ , </math>
''c'' being the speed of light and  '''''r<sub>O</sub>'''''  being the location of the particle on its trajectory.
The vector potential is:
:<math>\boldsymbol A(\boldsymbol r , \ t) =\left. \frac{q \boldsymbol \beta}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )|\boldsymbol r - \boldsymbol \tilde r |}\right|_{\tilde t} =\left. \frac{q \boldsymbol \beta}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )R}\right|_{\tilde t} \ . </math>


==Notes==
==Notes==

Revision as of 16:22, 23 April 2011

Liénard–Wiechert potentials


Define β as:

and unit vector û as

where R is the vector joining the observation point P to the moving charge q at the time of observation. Then the Liénard–Wiechert potentials consist of a scalar potential Φ and a vector potential A. The scalar potential is:

where the tilde ~ denotes evaluation at the retarded time ,

c being the speed of light and rO being the location of the particle on its trajectory.

The vector potential is:

Notes

Feynman Belušević Gould Schwartz Schwartz Oughstun Eichler Müller-Kirsten Panat Palit Camara Smith classical distributed charge Florian Scheck Radiation reaction Fulvio Melia Radiative reaction Fulvio Melia Barut Radiative reaction Distributed charges: history Lorentz-Dirac equation Gould Fourier space description