User:John R. Brews/Sample: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>John R. Brews
imported>John R. Brews
Line 27: Line 27:
:<math>\boldsymbol E ( \boldsymbol r , \ t) = q \left[ \frac{
:<math>\boldsymbol E ( \boldsymbol r , \ t) = q \left[ \frac{


\mathbf{\hat u}-\boldsymbol \beta (1-\beta^2)
(\mathbf{\hat u}-\boldsymbol \beta )(1-\beta^2)


}{(1-\mathbf{\hat u} \mathbf{\cdot} \boldsymbol \beta )^3 R^2} + \frac{\mathbf{\hat u \ \mathbf{\times} \ } [(\hat\mathbf u-\boldsymbol \beta )\ \mathbf{\times} \ \boldsymbol {\dot \beta} ]}{c(1-\mathbf{\hat u \cdot}\boldsymbol \beta )^3 R} \right ]   
}{(1-\mathbf{\hat u} \mathbf{\cdot} \boldsymbol \beta )^3 R^2} + \frac{\mathbf{\hat u \ \mathbf{\times} \ } [(\hat\mathbf u-\boldsymbol \beta )\ \mathbf{\times} \ \boldsymbol {\dot \beta} ]}{c(1-\mathbf{\hat u \cdot}\boldsymbol \beta )^3 R} \right ]   

Revision as of 17:14, 23 April 2011

Liénard–Wiechert potentials


Define β in terms of the velocity of a point charge at time t as:

and unit vector û as

where R is the vector joining the observation point P to the moving charge q at the time of observation. Then the Liénard–Wiechert potentials consist of a scalar potential Φ and a vector potential A. The scalar potential is:[1]

where the tilde ~ denotes evaluation at the retarded time ,

c being the speed of light, r the location of the observation point, and rO being the location of the particle on its trajectory.

The vector potential is:

With these potentials the electric field and the magnetic flux density are found to be (dots over symbols are time derivatives):[1]

Notes

  1. 1.0 1.1 Fulvio Melia (2001). “§4.6.1 Point currents and Liénard-Wiechert potentials”, Electrodynamics. University of Chicago Press, pp. 101. ISBN 0226519570. 

Feynman Belušević Gould Schwartz Schwartz Oughstun Eichler Müller-Kirsten Panat Palit Camara Smith classical distributed charge Florian Scheck Radiation reaction Fulvio Melia Radiative reaction Fulvio Melia Barut Radiative reaction Distributed charges: history Lorentz-Dirac equation Gould Fourier space description