Talk:Vector rotation: Difference between revisions
imported>Paul Wormer |
imported>David E. Volk |
||
Line 16: | Line 16: | ||
:It seems to me that the M-H formula for non-parallel V1 and V2 is easier to use (it does not need the decisions about relative sizes of elements). As you say there are tons of rotation formulas and the one you gave is probably one of the least known. The eq. on the top of the page 2 of the M-H paper is very well-known and goes back to Euler, maybe we should rather give that one? (Considering CZ is a general encyclopedia)--[[User:Paul Wormer|Paul Wormer]] 14:05, 8 April 2009 (UTC) | :It seems to me that the M-H formula for non-parallel V1 and V2 is easier to use (it does not need the decisions about relative sizes of elements). As you say there are tons of rotation formulas and the one you gave is probably one of the least known. The eq. on the top of the page 2 of the M-H paper is very well-known and goes back to Euler, maybe we should rather give that one? (Considering CZ is a general encyclopedia)--[[User:Paul Wormer|Paul Wormer]] 14:05, 8 April 2009 (UTC) | ||
::: Before I used this method, I perused alot of literature and computer programming sites looking for various pros and cons of different methods, and the M-H method seemed to be quite popular with computer programmers, mostly for the speed of calculation (no square roots or inverse trig), but also to avoid so-called "gimbel lock" when vectors are nearly parallel to an axis, causing trig functions to approach infinity. Others were huge supporters or huge detractors of the Quaternion method. Perhaps we should do a science citation search on the M-H method and see what later literature, rather than computer programmers, think of the method. [[User:David E. Volk|David E. Volk]] 15:44, 8 April 2009 (UTC) |
Revision as of 09:44, 8 April 2009
Quaternions
Any help creating a quaternion methods section for the article would be greatly appreciated. Also, I wonder if the final equation shown is sufficient for this article, or whether I should expand the final answer to show the full calculation of rxx, rxy and the final values of rotated vector in terms of V1 and V2. David E. Volk 17:46, 8 March 2009 (UTC)
Paper on internet
I found a copy of the Möller-Hughes paper here. It seems that the present CZ article lacks the general formula and only gives the formula for the special case of almost parallel V1 and V2 (plus typo).
Question: what is the use of the rotation matrix? Usually such a matrix is used to construct V2 from V1, but now V2 is already known.
--Paul Wormer 00:30, 8 April 2009 (UTC)
Here's how I used it
V1 and V2 can be any direction with the equation given, not nearly parallel. I also have the paper and have been using it for vectors that are often nearly perpendicular. There are tons of ways to use these rotations in computer programs. Personally, I used it a few weeks ago to write a program that creates DNA atomic structures from secondary structure information. After an unusual bulge or kink in the DNA, say a 5-base bulge on one side, the program translates the entire structure so the last base pair's center is at (0,0,0) and then rotates the entire structure such that the last base pair's helical axis points in the direction (0,0,1), after which additional DNA base pairs to can be simply stacked right up on top. David E. Volk 12:55, 8 April 2009 (UTC)
- It seems to me that the M-H formula for non-parallel V1 and V2 is easier to use (it does not need the decisions about relative sizes of elements). As you say there are tons of rotation formulas and the one you gave is probably one of the least known. The eq. on the top of the page 2 of the M-H paper is very well-known and goes back to Euler, maybe we should rather give that one? (Considering CZ is a general encyclopedia)--Paul Wormer 14:05, 8 April 2009 (UTC)
- Before I used this method, I perused alot of literature and computer programming sites looking for various pros and cons of different methods, and the M-H method seemed to be quite popular with computer programmers, mostly for the speed of calculation (no square roots or inverse trig), but also to avoid so-called "gimbel lock" when vectors are nearly parallel to an axis, causing trig functions to approach infinity. Others were huge supporters or huge detractors of the Quaternion method. Perhaps we should do a science citation search on the M-H method and see what later literature, rather than computer programmers, think of the method. David E. Volk 15:44, 8 April 2009 (UTC)
- Article with Definition
- Developing Articles
- Nonstub Articles
- Internal Articles
- Mathematics Developing Articles
- Mathematics Nonstub Articles
- Mathematics Internal Articles
- Computers Developing Articles
- Computers Nonstub Articles
- Computers Internal Articles
- Physics Developing Articles
- Physics Nonstub Articles
- Physics Internal Articles