Product operator (NMR): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David E. Volk
m (fixing equations)
imported>David E. Volk
Line 53: Line 53:


== Chemical Shift Operators ==
== Chemical Shift Operators ==
Nuclei rotate around the XY plane at different frequencies.  For example, assuming an 800 MHz central proton frequency, some protons will rotate 800 Hertz, or 1 part-per-million (ppm), faster, while others will rotate about the field more slowly.  This difference from the central frequency, expressed in ppm, is called a chemical shift, which is sybolized as <math>\delta</math>.  The actual frequency, is sybolized as <math>\omega</math> in radians/second or J if expressed in Hertz.  J = 2<math>\pi\omega</math>  Remembering that the central frequency is fixed on the X-axis, the chemical shifts of each proton will cause them to rotate away from the X-axis towards the Y-axis for faster frequencies and towards the minus Y-axis for slower frequencies.  The total angle of the rotation is time dependent, so that during time delay <math>\tau</math>, the angle = <math>\omega\tau</math>.  Chemical shifts do not evolve for any Z-axis vector.


== Delay Operators ==
== Delay Operators ==


== J-coupling Operators ==
== J-coupling Operators ==

Revision as of 12:06, 19 January 2009

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In the various fields of nuclear magnetic resonance, the product operator mathematical formalism is often used to simplify both the design and the interpretation of often very complex sequences of radio frequency electromagnetic pulses applied to samples under study. Basically, it is a short hand mathematical construct, a set of equations, that is used in place of more complex, although equivalent, matrix multiplication. The formalism uses a rotating frame of reference, in which the central irradiation frequency, say 800 MHz, is fixed on the X- or Y-axis, and the magnetic field, by convention, points towards the postive Z-axis. By convention, I and S indicate magnetic vectors associated with protons or heteroatom, respectively. Subscripts are used to indicate the axial orientation of the magnetic vector. At equilibrium, the net proton magnetic vector is thus Iz.

Single Pulses (rotations)

Arbitrary pulses (rotations)

Ix -->(x) --> Ix

Ix -->(y) --> Ixcos() + Izsin()

Ix -->(z) --> Ixcos() - Iysin()


Iy -->(x) --> Iycos() - Izsin()

Iy -->(y) --> Iy

Iy -->(z) --> Iycos() + Ixsin()


Iz -->(x) --> Izcos() + Iysin()

Iz -->(y) --> Izcos() - Ixsin()

Iz -->(z) --> Iz


90 degree pulses

So called 90 degree (/2) pulses, in which magnetization is rotated from one axis to another, are the most widely used single pulses in NMR spectroscopy and the above equations simplify to the following for such pulses.


Ix -->(90x) --> Ix

Ix -->(90y) --> Iz

Ix -->(90z) --> -Iy


Iy -->(90y) --> Iy

Iy -->(90z) --> Ix

Iy -->(90x) --> -Iz


Iz -->(90z) --> Iz

Iz -->(90x) --> -Iy

Iz -->(90y) --> -Ix


Chemical Shift Operators

Nuclei rotate around the XY plane at different frequencies. For example, assuming an 800 MHz central proton frequency, some protons will rotate 800 Hertz, or 1 part-per-million (ppm), faster, while others will rotate about the field more slowly. This difference from the central frequency, expressed in ppm, is called a chemical shift, which is sybolized as . The actual frequency, is sybolized as in radians/second or J if expressed in Hertz. J = 2 Remembering that the central frequency is fixed on the X-axis, the chemical shifts of each proton will cause them to rotate away from the X-axis towards the Y-axis for faster frequencies and towards the minus Y-axis for slower frequencies. The total angle of the rotation is time dependent, so that during time delay , the angle = . Chemical shifts do not evolve for any Z-axis vector.

Delay Operators

J-coupling Operators