Ideal gas law/Tutorials: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
(2 extra problems)
imported>Paul Wormer
No edit summary
Line 9: Line 9:
* <i> The molar gas constant</i> ''R'' = 0.082057 atm&sdot;L/(K&sdot;mol)
* <i> The molar gas constant</i> ''R'' = 0.082057 atm&sdot;L/(K&sdot;mol)


*  1 bar = 0.98692 atm
<!--*  1 bar = 0.98692 atm -->
== Example problems ==
== Example problems ==
===Problem 1===
===Problem 1===
Determine the volume of 1 mol of ideal gas at pressure 1 atm and temperature 20 °C.
Determine the volume of 1 mol of ideal gas at pressure 1 atm and temperature 20 °C.
:<math>
:<math>
V = \frac{n\,R\,T}{p} = \frac{1\cdot 0.082057\cdot (20+273.15)}{1} \quad
V = \frac{n\,R\,T}{p} = \frac{1\cdot 0.082057\cdot (20+273.15)}{1} \quad\left[
\frac{ \mathrm{mol}\cdot\frac {\mathrm{atm}\cdot\mathrm{L}} {\mathrm{K}\cdot\mathrm{mol}}
\frac{ \mathrm{mol}\cdot\frac {\mathrm{atm}\cdot\mathrm{L}} {\mathrm{K}\cdot\mathrm{mol}}
       \cdot\mathrm{K} }
       \cdot\mathrm{K} }
     {\mathrm{atm}}
     {\mathrm{atm}} \right]
= 24.0550 \quad \mathrm{L}
= 24.0550 \quad [\mathrm{L}]


</math>
</math>
===Problem 2===
===Problem 2===
Compute from Charles' and Gay-Lussac's law (V/T is constant) the volume of an ideal gas at 1 atm and 0 °C (Use the final result of the previous problem). Write ''V''<sub>''T''</sub> for the volume at ''T'' °C, then
Compute from Charles' and Gay-Lussac's law (''V''/''T'' is constant) the volume of an ideal gas at 1 atm and 0 °C (Use the final result of the previous problem). Write ''V''<sub>''T''</sub> for the volume at ''T'' °C, then
:<math>
:<math>
\frac{V_{20}}{273.15+20} = \frac{V_0}{273.15+0} \quad\Longrightarrow
\frac{V_{20}}{273.15+20} = \frac{V_0}{273.15+0} \quad\Longrightarrow
V_0  = 273.15 \times \frac{24.0550}{298.15} = 22.4139 \;\mathrm{L}
V_0  = 273.15 \times \frac{24.0550}{298.15} = 22.4139\; \;[\mathrm{L}]
</math>
</math>


Line 42: Line 42:
Inserting the given numbers
Inserting the given numbers
:<math>
:<math>
(1.3)\qquad\qquad  V_\mathrm{f} = \left(\frac{1\cdot 2}{5}\right)\; \frac{\mathrm{atm}\sdot\mathrm{L}}{\mathrm{atm}}  = 0.4\; \mathrm{L}  
(1.3)\qquad\qquad  V_\mathrm{f} = \left(\frac{1\cdot 2}{5}\right)\;\left[ \frac{\mathrm{atm}\sdot\mathrm{L}}{\mathrm{atm}} \right]   = 0.4\; [\mathrm{L}]
</math>
</math>


Line 60: Line 60:
:<math>
:<math>
n=\frac{p\,V}{R\,T} = \frac{10.0\cdot 50.0} {0.0821 \cdot (273+25.0)}
n=\frac{p\,V}{R\,T} = \frac{10.0\cdot 50.0} {0.0821 \cdot (273+25.0)}
\quad
\quad \left[
\frac{\mathrm{atm}\cdot \mathrm{L}}{\frac{\mathrm{atm} \cdot \mathrm{L}}{\mathrm{K}\cdot \mathrm{mol}}\cdot\mathrm{K}}
\frac{\mathrm{atm}\cdot \mathrm{L}}{\frac{\mathrm{atm} \cdot \mathrm{L}}{\mathrm{K}\cdot \mathrm{mol}}\cdot\mathrm{K}} \right]
=\frac{500}{0.0821 \cdot 298}\quad \frac{\mathrm{mol} \cdot \mathrm{atm}\cdot \mathrm{L}}{\mathrm{atm}\cdot \mathrm{L}} = 20.4 \quad \mathrm{mol}
=\frac{500}{0.0821 \cdot 298}\quad\left[ \frac{\mathrm{mol} \cdot \mathrm{atm}\cdot \mathrm{L}}{\mathrm{atm}\cdot \mathrm{L}} \right] = 20.4 \quad [\mathrm{mol}]


</math>
</math>

Revision as of 07:37, 7 January 2009

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Video [?]
Tutorials [?]
 
Tutorials relating to the topic of Ideal gas law.
  • All gases mentioned below are assumed to be ideal, i.e. their p, V, T dependence is given by the ideal gas law.
  • The molar gas constant R = 0.082057 atm⋅L/(K⋅mol)

Example problems

Problem 1

Determine the volume of 1 mol of ideal gas at pressure 1 atm and temperature 20 °C.

Problem 2

Compute from Charles' and Gay-Lussac's law (V/T is constant) the volume of an ideal gas at 1 atm and 0 °C (Use the final result of the previous problem). Write VT for the volume at T °C, then


Problem 3

A certain amount of gas that has an initial pressure of 1 atm and an initial volume of 2 L, is compressed to a final pressure of 5 atm at constant temperature. What is the final volume of the gas?

Boyle's law (pV is constant)

or

Inserting the given numbers

Ideal gas law

The number n of moles is constant

It is given that the initial and final temperature are equal, , therefore the products RT on both sides of the equation cancel, and Eq. (1.4) reduces to Eq. (1.1).


Problem 4

How many moles of nitrogen are present in a 50 L tank at 25 °C when the pressure is 10 atm? Numbers include only 3 significant figures.