Number theory/Signed Articles/Elementary diophantine approximations: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Wlodzimierz Holsztynski
(→‎Notation: more notation)
imported>Wlodzimierz Holsztynski
Line 23: Line 23:
* <math>\Leftarrow:\Rightarrow\ </math>  &nbsp; &mdash; &nbsp;  "equivalent by definition" (i.e. "if and only if");
* <math>\Leftarrow:\Rightarrow\ </math>  &nbsp; &mdash; &nbsp;  "equivalent by definition" (i.e. "if and only if");
* <math>:=\ </math>  &nbsp; &mdash; &nbsp;  "equals by definition";
* <math>:=\ </math>  &nbsp; &mdash; &nbsp;  "equals by definition";
* <math>\exists</math> &nbsp; &mdash; &nbsp;  "there exists";
* <math>\exists</math> &nbsp; &mdash; &nbsp;  "there exists";
* <math>\forall</math> &nbsp; &mdash; &nbsp;  "for all";
* <math>\forall</math> &nbsp; &mdash; &nbsp;  "for all";
* <math>a\in A\ </math> &nbsp; &mdash; &nbsp;  "<math>a\ </math>&nbsp; is an element of set <math>\ A</math>";
&nbsp;
&nbsp;
* <math>\mathbb{N}\ :=\ \{1, 2 \dots\}</math>  &nbsp;&mdash;&nbsp;  the semiring of the natural numbers;
* <math>\mathbb{N}\ :=\ \{1, 2 \dots\}</math>  &nbsp;&mdash;&nbsp;  the semiring of the natural numbers;
Line 31: Line 32:
* <math>\mathbb{R}</math> &nbsp;&mdash;&nbsp; the field of real numbers;
* <math>\mathbb{R}</math> &nbsp;&mdash;&nbsp; the field of real numbers;
&nbsp;
&nbsp;
* <math>\gcd(a, b)\ </math>  &nbsp;&mdash;&nbsp; the greatest common divisor of integers <math>\ a</math>&nbsp; and <math>\ b.</math>
* <math>\gcd(a, b)\ </math>  &nbsp;&mdash;&nbsp; the greatest common divisor of integers <math>\ a</math>&nbsp; and <math>\ b</math>
 
== Divisibility ==
 
'''Definition'''&nbsp; Integer <math>\ a</math>&nbsp; is divisible by integer <math>\ b</math> &nbsp; <math>\Leftarrow:\Rightarrow\ </math> &nbsp; <math>\exists_{c\in\mathbb{Z}}\ a=b\cdot c.</math>

Revision as of 19:03, 12 January 2008

The theory of diophantine approximations is a chapter of number theory, which in turn is a part of mathematics. It studies the approximations of real numbers by rational numbers. This article presents an elementary introduction to diophantine approximations, as well as an introduction to number theory via diophantine approximations.

Introduction

In the everyday life our civilization applies mostly (finite) decimal fractions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{k}{10^n}.}   Decimal fractions are used both as certain values, e.g. $5.85, and as approximations of the real numbers, e.g. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \pi \approx 3.14159.}   However, the field of all rational numbers is much richer than the ring of the decimal fractions (or of the binary fractions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{k}{2^n},}   which are used in the computer science). For instance, the famous approximation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \pi \approx \frac{355}{113}}   has denominator 113 much smaller than 105 but it provides a better approximation than the decimal one, which has five digits after the decimal point.

How well can real numbers (all of them or the special ones) be approximated by rational numbers? A typical Diophantine approximation result states:

Theorem  Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   be an arbitrary real number. Then

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   is rational if and only if there exists a real number C > 0 such that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |a - \frac{x}{y}| > \frac{C}{y}}

for arbitrary integers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (x,y)}   such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ y>0}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a\ne \frac{x}{y};}

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   is irrational if and only if there exist infinitely many pairs of integers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (x,y)}   such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ y>0}   and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |a - \frac{x}{y}| < \frac{1}{\sqrt{5}\cdot y^2}.}

Notation

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftarrow:\Rightarrow\ }   —   "equivalent by definition" (i.e. "if and only if");
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle :=\ }   —   "equals by definition";
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists}   —   "there exists";
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall}   —   "for all";
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\in A\ }   —   "Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\ }   is an element of set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A} ";

 

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{N}\ :=\ \{1, 2 \dots\}}  —  the semiring of the natural numbers;
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}\ :=\ \{-2,-1,1, 2 \dots\}}  —  the ring of integers;
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}}  —  the field of rational numbers;
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}}  —  the field of real numbers;

 

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gcd(a, b)\ }  —  the greatest common divisor of integers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ b}

Divisibility

Definition  Integer Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a}   is divisible by integer Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ b}   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftarrow:\Rightarrow\ }   Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists_{c\in\mathbb{Z}}\ a=b\cdot c.}