Parabola: Difference between revisions
imported>Holger Kley No edit summary |
imported>Holger Kley mNo edit summary |
||
Line 3: | Line 3: | ||
Let <math>d</math> be a line and <math>F</math> a point. In the degenerate when <math>F</math> is a point of <math>d</math>, the "parabola" with directrix <math>d</math> and focus <math>F</math> is the line through <math>F</math> that is perpendicular to <math>d</math>. In the language of conic sections, this corresponds to the case when the plane contains a generator of the cone. | Let <math>d</math> be a line and <math>F</math> a point. In the degenerate when <math>F</math> is a point of <math>d</math>, the "parabola" with directrix <math>d</math> and focus <math>F</math> is the line through <math>F</math> that is perpendicular to <math>d</math>. In the language of conic sections, this corresponds to the case when the plane contains a generator of the cone. | ||
To avoid the degenerate case, assume that <math>F</math> does not lie in <math>d</math>, let <math>\Pi</math> be the unique plane containing <math>F</math> and <math>d</math> and let <math>P</math> be the parabola with focus <math>F</math> and directrix <math>d</math>. The line <math>s</math> through <math>F</math> and perpendicular to <math>d</math> is called the ''axis'' of the the parabola <math>P</math> and is the unique line of symmetry of <math>P</math>. The unique point <math>V</math> of <math>s</math> that is equidistant from <math>F</math> and <math>d</math> lies on <math>P</math> and is known as the ''vertex'' of the parabola. | To avoid the degenerate case, assume that <math>F</math> does not lie in <math>d</math>, let <math>\Pi</math> be the unique plane containing <math>F</math> and <math>d</math> and let <math>P</math> be the parabola with focus <math>F</math> and directrix <math>d</math>. The line <math>s</math> through <math>F</math> and perpendicular to <math>d</math> is called the ''axis'' of the the parabola <math>P</math> and is the unique line of symmetry of <math>P</math>. The unique point <math>V</math> of <math>s</math> that is equidistant from <math>F</math> and <math>d</math> lies on <math>P</math> and is known as the ''vertex'' of the parabola, and the distance <math>FV</math> is called the ''focal distance'' of the parabola. | ||
Now let <math>F'</math> be a point in <math>\Pi</math> and <math>d'</math> a line in <math>\Pi</math> such that the distance from <math>F'</math> to <math>d'</math> equals the distance from <math>F</math> to <math>d</math>. Then there is a unique, orientation-preserving rigid motion of <math>\Pi</math> taking <math>F</math> to <math>F'</math> and <math>d</math> to <math>d'</math> and therefore, the parabola <math>P</math> to the parabola with focus <math>F'</math> and directrix <math>d'</math>. | Now let <math>F'</math> be a point in <math>\Pi</math> and <math>d'</math> a line in <math>\Pi</math> such that the distance from <math>F'</math> to <math>d'</math> equals the distance from <math>F</math> to <math>d</math>. Then there is a unique, orientation-preserving rigid motion of <math>\Pi</math> taking <math>F</math> to <math>F'</math> and <math>d</math> to <math>d'</math> and therefore, the parabola <math>P</math> to the parabola with focus <math>F'</math> and directrix <math>d'</math>. In other words, any two parabolas with the same focal distance are congruent. |
Revision as of 19:37, 9 December 2007
Synthetically, a parabola is the locus of points in a plane that are equidistant from a given line (the directrix) and a given point (the focus). Alternatively, a parabola is a conic section obtained as the intersection of a right circular cone with a plane parallel to a generator of the cone.
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} be a line and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} a point. In the degenerate when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} is a point of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} , the "parabola" with directrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} and focus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} is the line through Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} that is perpendicular to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} . In the language of conic sections, this corresponds to the case when the plane contains a generator of the cone.
To avoid the degenerate case, assume that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} does not lie in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} , let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi} be the unique plane containing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} and let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} be the parabola with focus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} and directrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} . The line Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} through Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} and perpendicular to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} is called the axis of the the parabola Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} and is the unique line of symmetry of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} . The unique point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} that is equidistant from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} lies on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} and is known as the vertex of the parabola, and the distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle FV} is called the focal distance of the parabola.
Now let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'} be a point in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d'} a line in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi} such that the distance from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d'} equals the distance from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} . Then there is a unique, orientation-preserving rigid motion of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi} taking Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d'} and therefore, the parabola Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} to the parabola with focus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'} and directrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d'} . In other words, any two parabolas with the same focal distance are congruent.