Fibonacci number: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Aleksander Stos
m (not sure whether it should be left in the article (in the present form))
imported>Aleksander Stos
(→‎Direct formula: straightforward claim of the formula)
Line 23: Line 23:


== Direct formula ==
== Direct formula ==
We have
:<math>F_n\ =\ \frac{1}{\sqrt{5}}\cdot \left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)</math>
for every <math>\ n=0,1,\dots</math> .


Let&nbsp; <math>A := \frac{1+\sqrt{5}}{2}</math>&nbsp; and &nbsp;<math>a := \frac{1-\sqrt{5}}{2}</math> .&nbsp; Let
Indeed, let&nbsp; <math>A := \frac{1+\sqrt{5}}{2}</math>&nbsp; and &nbsp;<math>a := \frac{1-\sqrt{5}}{2}</math> .&nbsp; Let


:::<math>f_n\ :=\ \frac{1}{\sqrt{5}}\cdot(A^n - a^n)</math>
:<math>f_n\ :=\ \frac{1}{\sqrt{5}}\cdot(A^n - a^n)</math>


Then:
Then:
Line 34: Line 37:
* <math>f_{n+2}\ =\ f_{n+1}+f_n</math>
* <math>f_{n+2}\ =\ f_{n+1}+f_n</math>


for every <math>\ n=0,1,\dots</math>. Thus <math>\ f_n = F_n</math>&nbsp; for every <math>\ n=0,1,\dots</math> , i.e.
for every <math>\ n=0,1,\dots</math>. Thus <math>\ f_n = F_n</math>&nbsp; for every <math>\ n=0,1,\dots,</math> and the formula is proved.


:<math>F_n\ =\ \frac{1}{\sqrt{5}}\cdot \left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)</math>
Furthermore, we have:
 
for every <math>\ n=0,1,\dots</math> . Furthermore:


* <math>A\cdot a = -1\ </math>
* <math>A\cdot a = -1\ </math>
Line 44: Line 45:
* <math>-1 < a < 0\ </math>
* <math>-1 < a < 0\ </math>
* <math>\frac{1}{2}\ >\ \left|\frac{1}{\sqrt{5}}\cdot a^n\right|\quad\rightarrow\quad 0</math>
* <math>\frac{1}{2}\ >\ \left|\frac{1}{\sqrt{5}}\cdot a^n\right|\quad\rightarrow\quad 0</math>


It follows that
It follows that
:<math>F_n\ </math>&nbsp; is the nearest integer to&nbsp; <math>\frac{1}{\sqrt{5}}\cdot \left(\frac{1+\sqrt{5}}{2}\right)^n</math>
:<math>F_n\ </math>&nbsp; is the nearest integer to&nbsp; <math>\frac{1}{\sqrt{5}}\cdot \left(\frac{1+\sqrt{5}}{2}\right)^n</math>



Revision as of 08:31, 29 December 2007

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation:

The sequence of fibonacci numbers start: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

Properties

  • The quotient of two consecutive fibonacci numbers converges to the golden ratio:
  • If divides then divides
  • If and is a prime number then is prime. (The converse is false.)

Direct formula

We have

for every .

Indeed, let    and   .  Let

Then:

  •     and    
  •     hence    
  •     hence    

for every . Thus   for every and the formula is proved.

Furthermore, we have:

It follows that

  is the nearest integer to 

for every . It follows that  ;  thus the value of the golden ratio is

.

Further reading

Applications

The sequence of Fibonacci numbers was first used to represent the growth of a colony of rabbits, starting with one pair of rabbits.