imported>Karsten Meyer |
imported>Karsten Meyer |
Line 3: |
Line 3: |
|
| |
|
| There exist two kinds of Lucas sequences: | | There exist two kinds of Lucas sequences: |
| *Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>, | | *Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 0}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>, |
| *Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle V_n(P,Q)=a^n+b^n\ </math>, | | *Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 0}</math> with <math>\scriptstyle V_n(P,Q)=a^n+b^n\ </math>, |
|
| |
|
| where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions | | where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions |
Line 19: |
Line 19: |
|
| |
|
| *The variables <math>\scriptstyle a\ </math> and <math>\scriptstyle b\ </math>, and the parameter <math>\scriptstyle P\ </math> and <math>\scriptstyle Q\ </math> are interdependent. In particular, <math>\scriptstyle P=a+b\ </math> and <math>\scriptstyle Q=a\cdot b.</math>. | | *The variables <math>\scriptstyle a\ </math> and <math>\scriptstyle b\ </math>, and the parameter <math>\scriptstyle P\ </math> and <math>\scriptstyle Q\ </math> are interdependent. In particular, <math>\scriptstyle P=a+b\ </math> and <math>\scriptstyle Q=a\cdot b.</math>. |
| *For every sequence <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> it holds that <math>\scriptstyle U_0 = 0\ </math> and <math>U_1 = 1 </math>. | | *For every sequence <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 0}</math> it holds that <math>\scriptstyle U_0 = 0\ </math> and <math>U_1 = 1 </math>. |
| *For every sequence <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> is holds that <math>\scriptstyle V_0 = 2\ </math> and <math>V_1 = P </math>. | | *For every sequence <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 0}</math> is holds that <math>\scriptstyle V_0 = 2\ </math> and <math>V_1 = P </math>. |
|
| |
|
| For every Lucas sequence the following are true: | | For every Lucas sequence the following are true: |
Revision as of 05:13, 27 December 2007
In mathematics, a Lucas sequence is a particular generalisation of sequences like the Fibonacci numbers, Lucas numbers, Pell numbers or Jacobsthal numbers. Lucas sequences have one common characteristic: they can be generated over quadratic equations of the form:
with
.
There exist two kinds of Lucas sequences:
- Sequences
with
,
- Sequences
with
,
where
and
are the solutions
![{\displaystyle a={\frac {P+{\sqrt {P^{2}-4Q}}}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/84950dc39ccd679e34804d730f674aa03b72e004)
and
![{\displaystyle b={\frac {P-{\sqrt {P^{2}-4Q}}}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a41e3c6117d0d1638487ff9dbcd345dbf1226223)
of the quadratic equation
.
Properties
- The variables
and
, and the parameter
and
are interdependent. In particular,
and
.
- For every sequence
it holds that
and
.
- For every sequence
is holds that
and
.
For every Lucas sequence the following are true:
![{\displaystyle \scriptstyle U_{2n}=U_{n}\cdot V_{n}\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/71158e00fcdedd313ee9e0c3eab9e01a05cd3748)
![{\displaystyle \scriptstyle V_{n}=U_{n+1}-QU_{n-1}\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee35e1da341de6e5fc73fdbcd7cbe6695dd9b4c1)
![{\displaystyle \scriptstyle V_{2n}=V_{n}^{2}-2Q^{n}\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/67e39c9185d21f99f722854114135b91ce038f84)
![{\displaystyle \scriptstyle \operatorname {gcd} (U_{m},U_{n})=U_{\operatorname {gcd} (m,n)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/28979bf3c00bcd04c2273c52911307e5457d545d)
for all ![{\displaystyle \scriptstyle U_{m}\neq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/086524e0b66c8e0cf52c2045c1ad8e0f21e51600)
Recurrence relation
The Lucas sequences U(P,Q) and V(P,Q) are defined by the recurrence relations
![{\displaystyle U_{0}(P,Q)=0\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ab65e7edf5489f871f8cdbdeeae5992026f52755)
![{\displaystyle U_{1}(P,Q)=1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2767d59b5fc386e0da8a6a35eba4779363839f1d)
![{\displaystyle U_{n}(P,Q)=PU_{n-1}(P,Q)-QU_{n-2}(P,Q){\mbox{ for }}n>1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/97704a29b99cbb1308212c76f39a737895b4ddec)
and
![{\displaystyle V_{0}(P,Q)=2\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/002dbc6c1d4985f9ec9c72f24e573aa41f64f30b)
![{\displaystyle V_{1}(P,Q)=P\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d63802ea912ba7fae75e93a7925e8ec8c3e66584)
![{\displaystyle V_{n}(P,Q)=PV_{n-1}(P,Q)-QV_{n-2}(P,Q){\mbox{ for }}n>1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0c78c7c07b5468f96dabd4675fd9b8cb35918321)
Fibonacci numbers and Lucas numbers
The two best known Lucas sequences are the Fibonacci numbers
and the Lucas numbers
with
and
.
Lucas sequences and the prime numbers
If the natural number
is a prime number then it holds that
divides ![{\displaystyle \scriptstyle U_{p}(P,Q)-\left({\frac {D}{p}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/504ff326ef33218e2ed82c4f5b0113bcd1783b70)
divides ![{\displaystyle \scriptstyle V_{p}(P,Q)-P\ }](https://wikimedia.org/api/rest_v1/media/math/render/svg/44596c115ea86da53c67e8248002c4916357dd3d)
Fermat's Little Theorem can then be seen as a special case of
divides
because
is equivalent to
.
The converse pair of statements that if
divides
then is
a prime number and if
divides
then is
a prime number) are individually false and lead to Fibonacci pseudoprimes and Lucas pseudoprimes, respectively.
Further reading