Quotient topology: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch (supplied References) |
mNo edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
{{subpages}} | |||
In [[general topology]], the '''quotient topology''', or '''identification topology''' is defined on the [[image]] of a [[topological space]] under a [[function (mathematics)|function]]. | In [[general topology]], the '''quotient topology''', or '''identification topology''' is defined on the [[image]] of a [[topological space]] under a [[function (mathematics)|function]]. | ||
Line 8: | Line 9: | ||
* {{cite book | author=Wolfgang Franz | title=General Topology | publisher=Harrap | year=1967 | pages=56 }} | * {{cite book | author=Wolfgang Franz | title=General Topology | publisher=Harrap | year=1967 | pages=56 }} | ||
* {{cite book | author=J.L. Kelley | authorlink=John L. Kelley | title=General topology | publisher=van Nostrand | year= 1955 | pages=94-99 }} | * {{cite book | author=J.L. Kelley | authorlink=John L. Kelley | title=General topology | publisher=van Nostrand | year= 1955 | pages=94-99 }} | ||
* {{cite book | author=Lynn Arthur Steen | authorlink=Lynn Arthur Steen | coauthors= J. Arthur Seebach jr | title=[[Counterexamples in Topology]] | year=1978 | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=0-387-90312-7 | pages=9 }} | * {{cite book | author=Lynn Arthur Steen | authorlink=Lynn Arthur Steen | coauthors= J. Arthur Seebach jr | title=[[Counterexamples in Topology]] | year=1978 | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=0-387-90312-7 | pages=9 }}[[Category:Suggestion Bot Tag]] |
Latest revision as of 11:00, 9 October 2024
In general topology, the quotient topology, or identification topology is defined on the image of a topological space under a function.
Let be a topological space, and q a surjective function from X onto a set Y. The quotient topology on Y has as open sets those subsets of such that the pre-image .
The quotient topology has the universal property that it is the finest topology such that q is a continuous map.
References
- Wolfgang Franz (1967). General Topology. Harrap, 56.
- J.L. Kelley (1955). General topology. van Nostrand, 94-99.
- Lynn Arthur Steen; J. Arthur Seebach jr (1978). Counterexamples in Topology. Berlin, New York: Springer-Verlag, 9. ISBN 0-387-90312-7.