User:Richard Pinch/Redirects: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
No edit summary
 
(33 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{AccountNotLive}}
==Redirects that might turn into articles==
==Redirects that might turn into articles==
I have created various redirects which may deserve their own articles.
I have created various redirects which may deserve their own articles.
* [[Adherent point]]
* [[Adjugate matrix]]
* [[Adjugate matrix]]
* [[Antichain]]
* [[Antichain]]
Line 10: Line 12:
* [[Bell number]]
* [[Bell number]]
* [[Boolean lattice]]
* [[Boolean lattice]]
* [[Brouwerian lattice]]
* [[Cayley-Hamilton theorem]]
* [[Cayley-Hamilton theorem]]
* [[Characteristic of a field‎]]
* [[Characteristic of a field‎]]
* [[Chief series]]
* [[Chief series]]
* [[Closure system]]
* [[Codomain]]
* [[Codomain]]
* [[Commutative monoid]]
* [[Commutative monoid]]
* [[Commutative ring]]
* [[Compactum]]
* [[Complemented lattice]]
* [[Complemented lattice]]
* [[Complete lattice]]
* [[Complete lattice]]
* [[Complete local ring]]
* [[Completely normal space]]
* [[Composition series]]
* [[Composition series]]
* [[Condensation point]]
* [[Connected component]]
* [[Connected component]]
* [[Connectedness]]
* [[Connectedness]]
* [[Contact point]]
* [[Coset]]
* [[Coset]]
* [[Countably compact space]]
* [[Countably compact space]]
* [[Cyclic permutation]]
* [[Cyclic permutation]]
* [[Cyclic quadrilateral]]
* [[Cyclic quadrilateral]]
* [[Degree of a polynomial]]
* [[Dense-in-itself set]]
* [[Derived group]]
* [[Derived group]]
* [[Derived set]]
* [[Derived set]]
Line 29: Line 41:
* [[Diagonalizable matrix]]
* [[Diagonalizable matrix]]
* [[Dilworth's theorem]]
* [[Dilworth's theorem]]
* [[Dirichlet L-function]]
* [[Dirichlet's unit theorem]]
* [[Discrete topology]]
* [[Discrete topology]]
* [[Discrete uniformity]]
* [[Distributive lattice]]
* [[Distributive lattice]]
* [[Dirichlet convolution]]
* [[Dirichlet convolution]]
Line 35: Line 50:
* [[Equivalence class]]
* [[Equivalence class]]
* [[Exponent (group theory)‎]]
* [[Exponent (group theory)‎]]
* [[F-sigma set]]
* [[Filter base]]
* [[Filter base]]
* [[First category space]]
* [[First countable space]]
* [[First countable space]]
* [[Formal derivative]]
* [[Formal Dirichlet series]]
* [[Formal Dirichlet series]]
* [[Formal power series]]
* [[Formal power series]]
Line 43: Line 61:
* [[Free semigroup]]
* [[Free semigroup]]
* [[Fully invariant subgroup]]
* [[Fully invariant subgroup]]
* [[G-delta space]]
* [[Group isomorphism]]
* [[Group isomorphism]]
* [[Hausdorff space]]
* [[Hausdorff space]]
* [[Heyting algebra]]
* [[Idempotent matrix]]
* [[Idempotent matrix]]
* [[Index of a subgroup]]
* [[Index of a subgroup]]
Line 51: Line 71:
* [[Inner automorphism]]
* [[Inner automorphism]]
* [[Interval (order)]]
* [[Interval (order)]]
* [[Isolated point]]
* [[Isometry]]
* [[Join]]
* [[Join]]
* [[Jordan-Dedekind chain condition‎]]
* [[Jordan-Dedekind chain condition‎]]
* [[Lagrange's Theorem]]
* [[Lagrange's Theorem]]
* [[Lattice (order)]]
* [[Lattice (order)]]
* [[Limit point of a sequence]]
* [[Lindelof space]]
* [[Lindelof space]]
* [[Locally compact space]]
* [[Matrix addition]]
* [[Matrix addition]]
* [[Matrix minor]]
* [[Matrix minor]]
* [[Matrix multiplication]]
* [[Matrix multiplication]]
* [[Matrix ring]]
* [[Mazur's theorem]]
* [[Mazur's theorem]]
* [[Meagre space]]
* [[Meet]]
* [[Meet]]
* [[Mertens conjecture]]
* [[Mertens conjecture]]
Line 65: Line 91:
* [[Möbius inversion formula]]
* [[Möbius inversion formula]]
* [[Modular lattice]]
* [[Modular lattice]]
* [[Monic polynomial]]
* [[Mordell-Weil theorem]]
* [[Mordell-Weil theorem]]
* [[Multiplicative function]]
* [[Multiplicative function]]
* [[Normal closure]]
* [[Normal series]]
* [[Normal series]]
* [[Normal space]]
* [[Normal space]]
* [[Normalisation (ring theory)]]
* [[Omega-accumulation point]]
* [[One-point compactification]]
* [[Open cover]]
* [[Open mapping theorem]]
* [[Operator associativity]]
* [[Operator associativity]]
* [[Orthocentre]]
* [[Orthocentre]]
Line 75: Line 108:
* [[Paracompact space]]
* [[Paracompact space]]
* [[Path-connected space]]
* [[Path-connected space]]
* [[Perfect field]]
* [[Perfect set]]
* [[Perfect set]]
* [[Perfectly normal space]]
* [[Power associativity‎]]
* [[Power associativity‎]]
* [[Pseudo-complement]]
* [[Pseudoinverse]]
* [[Primitive element (field theory)]]
* [[Projective dimension]]
* [[Projective dimension]]
* [[Pseudocompact space]]
* [[Ptolemy's theorem]]
* [[Ptolemy's theorem]]
* [[Quotient group]]
* [[Quotient semigroup]]
* [[Quotient semigroup]]
* [[Ray class group]]
* [[Ray class group]]
* [[Regular space]]
* [[Regular space]]
* [[Regulator of a number field]]
* [[Ring isomorphism]]
* [[Scalar matrix]]
* [[Second category space]]
* [[Second countable space]]
* [[Second countable space]]
* [[Semimodular lattice]]
* [[Separable element]]
* [[Separable extension]]
* [[Separable space]]
* [[Separable space]]
* [[Sequentially compact space]]
* [[Sequentially compact space]]
* [[Sigma-compact space]]
* [[Sigma-compact space]]
* [[Simple extension]]
* [[Skew-symmetric matrix]]
* [[Square matrix]]
* [[Square matrix]]
* [[Stirling's formula]]
* [[Stirling's formula]]
* [[Stone-Čech compactification]]
* [[Sub-basis (topology)]]
* [[Sub-basis (topology)]]
* [[Subjunctive lattice]]
* [[Subnormal series]]
* [[Subnormal series]]
* [[Supremum]]
* [[Supremum]]
* [[Symmetric matrix]]
* [[Symmetric matrix]]
* [[Topological property]]
* [[Totally disconnected space]]
* [[Totally disconnected space]]
* [[Totally multiplicative function]]
* [[Totally multiplicative function]]
* [[Transcendence basis]]
* [[Transcendence degree]]
* [[Ultrafilter]]
* [[Ultrafilter]]
* [[Uniform base]]
* [[Uniform base]]
* [[Unital ring]]
* [[Weierstrass degree]]
* [[Weierstrass form]]
* [[Zeta distribution]]

Latest revision as of 03:36, 22 November 2023


The account of this former contributor was not re-activated after the server upgrade of March 2022.


Redirects that might turn into articles

I have created various redirects which may deserve their own articles.