User:Milton Beychok/Sandbox: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Milton Beychok
No edit summary
 
Line 1: Line 1:
{{Image|TEPCO Power Plant Japan.jpg|right|350px|Figure 1: Power plant of the Tokyo Electric Power Company (TEPCO), in Yokohama , Japan, fueled with liquified natural gas (LNG)}}
{{AccountNotLive}}
__NOTOC__
[[File:Crude oil-fired power plant.jpg|thumb|right|225px|Industrial air pollution source]]
Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in the ambient atmosphere. It is performed with computer programs that solve the mathematical equations and algorithms which simulate the pollutant dispersion. The dispersion models are used to estimate or to predict the downwind concentration of air pollutants emitted from sources such as industrial plants, vehicular traffic or accidental chemical releases.


{{main|Steam}}
Such models are important to governmental agencies tasked with protecting and managing the ambient air quality. The models are typically employed to determine whether existing or proposed new industrial facilities are or will be in compliance with the National Ambient Air Quality Standards (NAAQS) in the United States or similar regulations in other nations. The models also serve to assist in the design of effective control strategies to reduce emissions of harmful air pollutants. During the late 1960's, the Air Pollution Control Office of the U.S. Environmental Protection Agency (U.S. EPA) initiated research projects to develop models for use by urban and transportation planners.<ref>J.C. Fensterstock et al, "Reduction of air pollution potential through environmental planning", ''JAPCA'', Vol. 21, No. 7, 1971.</ref> 
A '''steam generator''' is a device that uses a [[heat]] source to [[boiling point|boil]] liquid [[water]] and convert it into its [[Gas|vapor]]  phase, referred to as [[steam]]. The heat may be derived from the [[combustion]] of a [[fuel]] such as [[coal]], [[Petroleum crude oil|petroleum fuel oil]], [[natural gas]], [[municipal waste]] or [[biomass]], a [[nuclear fission]] reactor and other sources.


There are a great many different types of steam generators ranging in size from small medical and domestic [[humidifier]]s to large steam generators used in [[conventional coal-fired power plant]]s that generate about 3,500 [[kilogram]]s of steam per [[Watt|megawatt]]-hour of [[energy]] production. The adjacent photo depicts an 1150 M[[Watt|W]] power plant with three steam generators which generate a total of about 4,025,000 [[Kilogram|kg]]/hour of steam.
Air dispersion models are also used by emergency management personnel to develop emergency plans for accidental chemical releases. The results of dispersion modeling, using worst case accidental releases and meteorological conditions, can provide estimated locations of impacted areas and be used to determine appropriate protective actions. At industrial facilities in the United States, this type of consequence assessment or emergency planning is required under the Clean Air Act (CAA) codified in Part 68 of Title 40 of the Code of Federal Regulations.


Many small commercial and industrial steam generators are referred to as ''"boilers"''. In common usage, domestic water heaters are also referred to as ''"boilers"''. However, domestic water heaters do not boil water nor do they generate any steam.
The dispersion models vary depending on the mathematics used to develop the model, but all require the input of data that may include:


==Evolution of steam generator designs==
* Meteorological conditions such as wind speed and direction, the amount of atmospheric turbulence (as characterized by what is called the "stability class"), the ambient air temperature, the height to the bottom of any inversion aloft that may be present, cloud cover and solar radiation.
* The emission parameters such the type of source (i.e., point, line or area), the mass flow rate, the source location and height, the source exit velocity, and the source exit temperature.
* Terrain elevations at the source location and at receptor locations, such as nearby homes, schools, businesses and hospitals.
* The location, height and width of any obstructions (such as buildings or other structures) in the path of the emitted gaseous plume as well as the terrain surface roughness (which may be characterized by the more generic parameters "rural" or "city" terrain).


{{Image|Fire-tube Boiler.png|right|300px|Figure 2: Simplified schematic diagram of a fire tube boiler.}}
Many of the modern, advanced dispersion modeling programs include a pre-processor module for the input of meteorological and other data, and many also include a post-processor module for graphing the output data and/or plotting the area impacted by the air pollutants on maps. The plots of areas impacted usually include isopleths showing areas of pollutant concentrations that define areas of the highest health risk. The isopleths plots are useful in determining protective actions for the public and first responders.


;Fire-tube boilers<ref name=Nag>{{cite book|author=P.K. Nag|title=Power Plant Engineering|edition=3rd Edition|publisher=Tata McGraw-Hill|year=2008 |id=ISBN 0-07-064815-8}}</ref>
The atmospheric dispersion models are also known as atmospheric diffusion models, air dispersion models, air quality models, and air pollution dispersion models.


In the late 18th century, various design configurations of fire-tube boilers  began to be  widely used for steam generation in industrial plants, railway [[locomotive]]s and [[steamboat]]s. Fire-tube boilers are so named because the fuel combustion product gases ([[flue gas]]) flow through tubes surrounded by water contained in an outer cylindrical drum (see Figure 2). Today, steam-driven locomotives and river boats have virtually disappeared and fire-tube boilers are not used for steam generation in modern utility power plants.
==Atmospheric layers==


However, they are still used in some industrial plants to generate [[Steam|saturated steam]] at [[pressure]]s of up to about 18 [[bar]] and at rates ranging up to about 25,000 kg/hour.<ref>For example, the waste heat boiler in the [[Claus process|Claus sulfur recovery plants]] used in [[Petroleum refining processes|petroleum refineries]] are fire-tube boilers.</ref> In that range, fire-tube boilers offer low capital cost, operational reliability, rapid response to load changes and no need for highly skilled labor.
Discussion of the layers in the Earth's atmosphere is needed to understand where airborne pollutants disperse in the atmosphere. The layer closest to the Earth's surface is known as the ''troposphere''. It extends from sea-level up to a height of about 18 km and contains about 80 percent of the mass of the overall atmosphere. The ''stratosphere'' is the next layer and extends from 18 km up to about 50 km. The third layer is the ''mesosphere'' which extends from 50 km up to about 80 km. There are other layers above 80 km, but they are insignificant with respect to atmospheric dispersion modeling.


The major shortcoming of fire-tube boilers is that the water and steam are contained within the outer cylindrical shell and that shell is subject to size and pressure limitations. The [[tensile stress]] (or [[hoop stress]]) on the cylindrical shell walls is a function of the shell [[diameter]] and the internal steam pressure:<ref>[http://courses.washington.edu/me354a/chap12.pdf Pressure vessels:Combined stress] From the website of the Mechanical Engineering Department at the [[University of Washington]]</ref>
The lowest part of the troposphere is called the ''atmospheric boundary layer (ABL)'' or the ''planetary boundary layer (PBL)'' and extends from the Earth's surface up to about 1.5 to 2.0 km in height. The air temperature of the atmospheric boundary layer decreases with increasing altitude until it reaches what is called the ''inversion layer'' (where the temperature increases with increasing altitude) that caps the atmospheric boundary layer. The upper part of the troposphere (i.e., above the inversion layer) is called the ''free troposphere'' and it extends up to the 18 km height of the troposphere.


:<math>\sigma = \frac{p\, d}{2\, t}</math>
The ABL is the most important layer with respect to the emission, transport and dispersion of airborne pollutants. The part of the ABL between the Earth's surface and the bottom of the inversion layer is known as the ''mixing layer''. Almost all of the airborne pollutants emitted into the ambient atmosphere are transported and dispersed within the mixing layer. Some of the emissions penetrate the inversion layer and enter the free troposphere above the ABL.


where '''''&#963;''''' is the tensile stress (hoop stress) in [[Pascal (unit)|Pa]], '''''p''''' is the internal [[Pressure|gauge pressure]] in Pa, '''''d''''' is the internal diameter of the cylindrical shell in [[metre|m]] and '''''t''''' is the thickness of the cylindrical shell wall in m.
In summary, the layers of the Earth's atmosphere from the surface of the ground upwards are: the ABL made up of the mixing layer capped by the inversion layer; the free troposphere; the stratosphere; the mesosphere and others. Many atmospheric dispersion models are referred to as ''boundary layer models'' because they mainly model air pollutant dispersion within the ABL. To avoid confusion, models referred to as ''mesoscale models'' have dispersion modeling capabilities that can extend horizontally as much as  a few hundred kilometres. It does not mean that they model dispersion in the mesosphere.


The ever-growing need for increased quantities of steam at higher and higher pressures could not be provided by fire-tube boilers because, as can be seen in the above equation, both higher pressures and larger diameter shells led to prohibitively thicker and more expensive shells.
==Gaussian air pollutant dispersion equation==


{{Image|B&W Longitudinal Drum, Water-Tube Boiler.JPG|right|325px|Figure 3: Representation of a water-tube boiler in the early 1900s.}}
The technical literature on air pollution dispersion is quite extensive and dates back to the 1930s and earlier. One of the early air pollutant plume dispersion equations was derived by Bosanquet and Pearson.<ref>C.H. Bosanquet and J.L. Pearson, "The spread of smoke and gases from chimneys", ''Trans. Faraday Soc.'', 32:1249, 1936.</ref> Their equation did not assume Gaussian distribution nor did it include the effect of ground reflection of the pollutant plume.
{{Image|Stirling Water-Tube Boiler.jpg|right|300px|Figure 4: A Stirling four drum boiler}}


;Water-tube boilers
Sir Graham Sutton derived an air pollutant plume dispersion equation in 1947<ref>O.G. Sutton, "The problem of diffusion in the lower atmosphere", ''QJRMS'', 73:257, 1947.</ref><ref>O.G. Sutton, "The theoretical distribution of airborne pollution from factory chimneys", ''QJRMS'', 73:426, 1947.</ref> which did include the assumption of Gaussian distribution for the vertical and crosswind dispersion of the plume and also included the effect of ground reflection of the plume.


Water-tube boilers with longitudinal steam drums, as in Figure 3,<ref>{{cite book|author=Babcock and Wilcox Company|title=Steam, Its Generation and Use|edition=35th Edition, 6th issue|publisher=Bartlett Orr Press, New York|year=1922}} [http://books.google.com/books?id=93DVAAAAMAAJ&pg=PA66&dq=Babcock+Steam&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&as_brr=0#v=snippet&q=longitudinal&f=false Google Books]</ref> were developed to allow increases in generated steam pressure and increased capacity. The water-tube boilers, in which water flowed through inclined tubes and the combustion product gases flowed outside the tubes, put the desired higher steam pressures in the small diameter tubes which could withstand the tensile stress of higher pressures without requiring excessively thick tube walls.<ref name=Nag/>
Under the stimulus provided by the advent of stringent environmental control regulations, there was an immense growth in the use of air pollutant plume dispersion calculations between the late 1960s and today. A great many computer programs for calculating the dispersion of air pollutant emissions were developed during that period of time and they were commonly called "air dispersion models". The basis for most of those models was the '''Complete Equation For Gaussian Dispersion Modeling Of Continuous, Buoyant Air Pollution Plumes''' shown below:<ref name=Beychok>{{cite book|author=M.R. Beychok|title=Fundamentals Of Stack Gas Dispersion|edition=4th Edition| publisher=author-published|year=2005|isbn=0-9644588-0-2}}.</ref><ref>{{cite book|author=D. B. Turner| title=Workbook of atmospheric dispersion estimates: an introduction to dispersion modeling| edition=2nd Edition |publisher=CRC Press|year=1994|isbn=1-56670-023-X}}.</ref>


The relatively smaller steam drums (in comparison with the fire-tube shells) were also capable of withstanding the tensile stress of the desired higher pressures without needing excessively thick drum walls.


The water-tube boiler went through several stages of design and development. The steam drum was arranged either parallel to the tubes (as shown in Figure 3) or transverse to the tubes, in which case the boiler was referred to as being a "cross drum" rather than a "longitudinal drum" boiler. Cross drum boilers could accommodate more tubes than longitudinal drum boilers and they were designed to generate steam pressures of up to about 100 bar and at rates ranging up to about 225,000 kg/hour.
<math>C = \frac{\;Q}{u}\cdot\frac{\;f}{\sigma_y\sqrt{2\pi}}\;\cdot\frac{\;g_1 + g_2 + g_3}{\sigma_z\sqrt{2\pi}}</math>


The next stage of development involved using slightly bent tubes, three to four steam drums and one to two mud drums at the bottom of the tubes (see Figure 4). The three sets of bent tubes, as shown in Figure 4, each represent a bank of tubes extending from the front of the steam drums back to the rear of the drums. Thus, the longer the steam drums, the more tubes were available and the more [[heat transfer]] surface was available. The tubes were bent slightly so that they entered and exited the steam drums radially.  Baffles made of firebrick forced the flue gas to travel upwards from the mud drum to the right-hand steam drum and then downwards from the middle steam drum to the mud drum and finally upwards to the left-hand steam drum and out the flue gas exit in the upper left-hand corner. in essence, as shown in Figure 4, the baffles created a multi-pathway for the flue gas.
{| border="0" cellpadding="2"
 
|-
The mud drums were suspended from the bottom of the tube banks and were free to move when the tube banks expanded as they heated up during boiler start-ups or contracted as they cooled down during boiler shutdowns. The purpose of the mud drum was to collect any solids that precipitated out from the water and the mud drums had provisions for blow-down of the collected solid. 
|align=right|where:
 
|&nbsp;
Referring again to Figure 4, the fuel combustion zone was located in the lower right-hand section of the boiler and the design included provisions for an adequate combustion air supply as well as adequate [[Flue gas stack|flue gas stack draft]].
|-
 
!align=right|<math>f</math> 
Such designs were referred to as [[Stirling boilers]],<ref name=Stirling>{{cite book|author=The Engineering Staff of the Stirling Company|title=A Book on Steam for Engineers|edition=1st Edition|publisher=The Stirling Company|year=1905}} [http://books.google.com/books?id=VVNMAAAAMAAJ&pg=PA7&lpg=PA7&dq=%22Stirling+boiler%22&source=bl&ots=KEZG5FuItv&sig=q2LV61CEKeOUI3TCSMgBstbNN0s&hl=en&ei=KLUDS9GrOIGknQfsvtRl&sa=X&oi=book_result&ct=result&resnum=6&ved=0CB4Q6AEwBTgK#v=onepage&q=&f=false Google Books]</ref> named after Alan Stirling who designed his first boiler in 1883 and patented it in 1892, four years after forming the Stirling Boiler Company of [[New York]] in 1888.<ref name=ASME>[http://www.asme.org/Communities/History/Landmarks/Stirling_Watertube_Boilers.cfm Stirling Boilers] From the website of the [[American Society of Mechanical Engineers]] (ASME).</ref> One of the important advantages of the Stirling design was that the tubes were readily accessible, which made for easier inspection and maintenance or replacement of the tubes.
|align=left|= crosswind dispersion parameter
 
|-
The Stirling boilers with four steam drums were superseded by a simpler two drum design with a steam drum directly above a water (mud) drum and bent water tubes connecting the two drums. Later designs of the two drum version had a single flue gas path. In general, the Stirling boiler was capable of handling rapidly varying loads and was also adaptable to using various fuels.<ref name=Nag/> It could be said that the Stirling boilers were the forerunners of the modern steam generators used in power plants.
!align=right|&nbsp;
 
|align=left|= <math>\exp\;[-\,y^2/\,(2\;\sigma_y^2\;)\;]</math>
The Babcock and Wilcox Company purchased and assimilated the Stirling Boiler Company in 1906 and began mass production of the Stirling boilers.<ref name=ASME/> Although widely used for large steam generating plants in the period between 1900 and [[World War II]] (the early 1940's), Stirling boilers are rarely seen today.
|-
 
!align=right|<math>g</math>
==Modern power plant steam generators==
|align=left|= vertical dispersion parameter = <math>\,g_1 + g_2 + g_3</math>
 
|-
The large steam generators used in modern power plants to generate electricity are almost entirely some type of water-tube design, owing to their ability to operate at higher pressures.
!align=right|<math>g_1</math>
 
|align=left|= vertical dispersion with no reflections
{{Image|Coal-fired Steam Generator.png|right|350px|Figure 5: Large, coal-fired steam generator in a power plant.}}
|-
 
!align=right|&nbsp;
===Power plants using fuel combustion heat for steam generation===
|align=left|= <math>\; \exp\;[-\,(z - H)^2/\,(2\;\sigma_z^2\;)\;]</math>
|-
!align=right|<math>g_2</math>
|align=left|= vertical dispersion for reflection from the ground
|-
!align=right|&nbsp;
|align=left|= <math>\;\exp\;[-\,(z + H)^2/\,(2\;\sigma_z^2\;)\;]</math>
|-
!align=right|<math>g_3</math>
|align=left|= vertical dispersion for reflection from an inversion aloft
|-
!align=right|&nbsp;
|align=left|= <math>\sum_{m=1}^\infty\;\big\{\exp\;[-\,(z - H - 2mL)^2/\,(2\;\sigma_z^2\;)\;]</math>
|-
!align=right|&nbsp;
|align=left|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>+\, \exp\;[-\,(z + H + 2mL)^2/\,(2\;\sigma_z^2\;)\;]</math>
|-
!align=right|&nbsp;
|align=left|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>+\, \exp\;[-\,(z + H - 2mL)^2/\,(2\;\sigma_z^2\;)\;]</math>
|-
!align=right|&nbsp;
|align=left|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>+\, \exp\;[-\,(z - H + 2mL)^2/\,(2\;\sigma_z^2\;)\;]\big\}</math>
|-
!align=right|<math>C</math>
|align=left|= concentration of emissions, in g/m³, at any receptor located:
|-
!align=right|&nbsp;
|align=left|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; x meters downwind from the emission source point
|-
!align=right|&nbsp;
|align=left|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; y meters crosswind from the emission plume centerline
|-
!align=right|&nbsp;
|align=left|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; z meters above ground level
|-
!align=right|<math>Q</math>
|align=left|= source pollutant emission rate, in g/s
|-
!align=right|<math>u</math>
|align=left|= horizontal wind velocity along the plume centerline, m/s
|-
!align=right|<math>H</math>
|align=left|= height of emission plume centerline above ground level, in m
|-
!align=right|<math>\sigma_z</math>
|align=left|= vertical standard deviation of the emission distribution, in m
|-
!align=right|<math>\sigma_y</math>
|align=left|= horizontal standard deviation of the emission distribution, in m
|-
!align=right|<math>L</math>
|align=left|= height from ground level to bottom of the inversion aloft, in m
|-
!align=right|<math>\exp</math>
|align=left|= the exponential function
|}


{{main|Steam|Conventional coal-fired power plant}}
The above equation not only includes upward reflection from the ground, it also includes downward reflection from the bottom of any inversion lid present in the atmosphere.
Plants generating electric power with steam generated from fuel combustion heat may burn coal, petroleum fuel oil, natural gas, municipal waste or biomass. Depending upon whether the pressure of the steam being generated is below or above the critical pressure of water (221 bar), a power plant steam generator may be either a ''subcritical'' (below 221 bar) or a ''supercritical'' (above 221 bar) steam generator. Figure 1 (see above) is a photo that shows the magnitude of a large modern power plant that generates subcritical steam from combustion of a fuel.
The output [[Steam|superheated steam]] from subcritical steam generators, in power plants using fuel combustion, usually range in pressure from 130 to 190 bar, in temperature from 540 to 560 °C and at steam rates ranging from about 400,000 to about 5,000,000 kg/hour. The adjacent Figure 5 shows a typical modern power plant using fuel combustion to generate subcritical steam. The overall height of such steam generators ranges up to about 70 [[metre]]s.


As shown, the unit has a steam drum and uses water-tubes embedded in the walls of the generator's [[furnace]] combustion zone. The [[Steam|saturated steam]] from the steam drum is superheated by flowing through tubes heated by the hot combustion gases. The hot combustion gases are also used to preheat the boiler feedwater entering the steam drum and the combustion air entering the combustion zone.
The sum of the four exponential terms in <math>g_3</math> converges to a final value quite rapidly. For most cases, the summation of the series with '''''m''''' = 1, '''''m''''' = 2 and '''''m''''' = 3 will provide an adequate solution.


There are three configurations for such steam generators:
<math>\sigma_z</math> and <math>\sigma_y</math> are functions of the atmospheric stability class (i.e., a measure of the turbulence in the ambient atmosphere) and of the downwind distance to the receptor. The two most important variables affecting the degree of pollutant emission dispersion obtained are the height of the emission source point and the degree of atmospheric turbulence. The more turbulence, the better the degree of dispersion.


*Natural circulation in which liquid water flows downward from the steam drum via the downcomer (see Figure 5) and a mixture of steam and water returns to the steam drum by flowing upward via the tubes embedded in the furnace wall. The difference in density between the downward flowing liquid water and the upward flowing mixture of steam and liquid provides sufficient driving force to induce the circulating  flow.  
Whereas older models rely on stability classes for the determination of <math>\sigma_y</math> and <math>\sigma_z</math>, more recent models increasingly rely on Monin-Obukhov similarity theory to derive these parameters.


*Forced circulation in which a pump in the downcomer provides additional driving force for the circulating flow. The assistance of a pump is usually provided when generating steam at above about 170 bar because, at pressures above 170 bar, the density difference between the downcomer liquid and the liquid-steam mixture in the furnace wall tubes is reduced sufficiently to limit the circulating flow rate.
==Briggs plume rise equations==


*A once-through system in which no steam drum is provided and the boiler feedwater goes through the economizer, the furnace wall tubes and the superheater section in one continuous pass and there is no recirculation. In essence, the feedwater pump supplies the motive force for the flow through the system.
The Gaussian air pollutant dispersion equation (discussed above) requires the input of ''H'' which is the pollutant plume's centerline height above ground level. ''H'' is the sum of ''H''<sub>s</sub> (the actual physical height of the pollutant plume's emission source point) plus Δ''H'' (the plume rise due the plume's buoyancy).


Figure 6 below schematically depicts the three configurations:
[[File:Gaussian Plume.png|thumb|right|333px|Visualization of a buoyant Gaussian air pollutant dispersion plume]]


{{Image|PowerPlant SteamGen Configs.png|center|593px|Figure 6: Thermal power plant steam generator configurations}}
To determine Δ''H'', many if not most of the air dispersion models developed between the late 1960s and the early 2000s used what are known as "the Briggs equations." G.A. Briggs first published his plume rise observations and comparisons in 1965.<ref>G.A. Briggs, "A plume rise model compared with observations", ''JAPCA'', 15:433–438, 1965.</ref> In 1968, at a symposium sponsored by CONCAWE (a Dutch organization), he compared many of the plume rise models then available in the literature.<ref>G.A. Briggs, "CONCAWE meeting: discussion of the comparative consequences of different plume rise formulas", ''Atmos. Envir.'', 2:228–232, 1968.</ref> In that same year, Briggs also wrote the section of the publication edited by Slade<ref>D.H. Slade (editor), "Meteorology and atomic energy 1968", Air Resources Laboratory, U.S. Dept. of Commerce, 1968.</ref> dealing with the comparative analyses of plume rise models.  That was followed in 1969 by his classical critical review of the entire plume rise literature,<ref>G.A. Briggs, "Plume Rise", ''USAEC Critical Review Series'', 1969.</ref> in which he proposed a set of plume rise equations which have become widely known as "the Briggs equations".  Subsequently, Briggs modified his 1969 plume rise equations in 1971 and in 1972.<ref>G.A. Briggs, "Some recent analyses of plume rise observation", ''Proc. Second Internat'l. Clean Air Congress'', Academic Press, New York, 1971.</ref><ref>G.A. Briggs, "Discussion: chimney plumes in neutral and stable surroundings", ''Atmos. Envir.'', 6:507–510, 1972.</ref>


The [[critical point]] of a pure substance denotes the conditions above which distinct liquid and gas phases do not exist and there is no phase boundary between liquid and gas. As the critical point is approached, the properties of the gas and liquid phases approach one another, resulting in only one phase at the critical point: a ''homogeneous supercritical fluid''. Thus, for supercritical steam generators, the once through system in Figure 6 is the configuration of choice, since there is no liquid or vapor above the critical point and there is no need for a steam drum to separate the non-existing liquid and gas phases. The term "boiler" should not be used for a supercritical pressure steam generator, as no "boiling" actually occurs in such systems.
Briggs divided air pollution plumes into these four general categories:
* Cold jet plumes in calm ambient air conditions
* Cold jet plumes in windy ambient air conditions
* Hot, buoyant plumes in calm ambient air conditions
* Hot, buoyant plumes in windy ambient air conditions


A number of pioneering supercritical pressure once-through systems were built for the utility industry, many with pressures in the range of 310 to 340 bar and temperatures of 620 to 650 °C (well above the critical point of water). To reduce operational complexity and improve equipment reliability, subsequent supercritical systems were built at more moderate conditions of about 240 bar and 540 to 565 °C. The primary disadvantage of supercritical steam generators is the need for extremely pure feedwater, in the order of about 0.1 [[Parts per million notation|ppm]] by weight of [[total dissolved solids]] (TDS).<ref name=Nag/><ref>{{cite book|author=Thomas C. Elliot, Kao Chen and Robert C. Swanekamp|title=Standard Handbook of Powerplant Engineering|edition=2nd Edition|publisher=McGraw-Hill|year=1997|id=ISBN 0-07-019435-1}}</ref>
Briggs considered the trajectory of cold jet plumes to be dominated by their initial velocity momentum, and the trajectory of hot, buoyant plumes to be dominated by their buoyant momentum to the extent that their initial velocity momentum was relatively unimportant. Although Briggs proposed plume rise equations for each of the above plume categories, '''''it is important to emphasize that "the Briggs equations" which become widely used are those that he proposed for bent-over, hot buoyant plumes'''''.


{{Image|GT and CC HRSGs.jpg|right|325px|Figure 7: HRSGs for two combined cycle power plant units}}
In general, Briggs's equations for bent-over, hot buoyant plumes are based on observations and data involving plumes from typical combustion sources such as the flue gas stacks from steam-generating boilers burning fossil fuels in large power plants.  Therefore the stack exit velocities were probably in the range of 20 to 100 ft/s (6 to 30 m/s) with exit temperatures ranging from 250 to 500 °F (120 to 260 °C).


===Heat recovery steam generators===
A logic diagram for using the Briggs equations<ref name=Beychok/> to obtain the plume rise trajectory of bent-over buoyant plumes is presented below:
 
[[Image:BriggsLogic.png|none]]
A heat recovery steam generator (HRSG) is  a [[heat exchanger]] or series of heat exchangers that recovers heat from a hot gas stream and uses that heat to produce steam for driving steam turbines or as process steam in industrial facilities or as steam for [[district heating]].<ref>District heating is a system for the distribution of steam, generated at a centralized location, for use in heating commercial and residential buildings.</ref>
:{| border="0" cellpadding="2"
 
|-
An HRSG is an important part of a [[combined cycle power plant]] (CCPP)<ref>Also referred to as a combined cycle gas turbine (CCGT) or gas turbine combined cycle (GTCC)</ref> or a [[cogeneration power plant]].<ref>Also referred to as a [[combined heat and power]] (CHP) plant.</ref> In both of those types of power plants, the HRSG uses the hot [[flue gas]] at approximately 500 to 650 °C from a [[gas turbine]] to produce high-pressure steam. The steam produced by an HRSG in a gas turbine combined cycle power plant is used solely for generating electrical power. However, the steam produced by an HRSG in a cogeneration power plant is used partially for generating electrical power and partially for district heating or for process steam.
|align=right|where:
 
|&nbsp;
The combined cycle power plant, schematically depicted in Figure 8 below, is so named because it combines the [[Brayton cycle]] for the gas turbine and the [[Rankine cycle]]<ref>See the [[Steam]] article for temperature-[[entropy]] diagram of the Rankine cycle</ref> for the steam turbines. About 60 percent of the overall electrical power generated in a CCPP is produced by an electrical generator driven by the gas turbine and about 40 percent is produced by another electrical generator driven by the high-pressure and low-pressure steam turbines. For large scale power plants, a typical CCPP might use sets consisting of a gas turbine driving a 400 MW electricity generator and steam turbines driving a 200 MW generator (for a total of 600 MW), and the power plant might have 2 or more such sets. 
|-
 
!align=right| Δh
The primary component heat exchangers of an HRSG are the economizer, the evaporator and its associated steam drum and the superheater as shown in Figure 9 below. An HRSG may be in horizontal ducting with the hot gas flowing horizontally across vertical tubes as in Figure 9 or it may be in vertical ducting with the hot gas flowing vertically across horizontal tubes. In either horizontal or vertical HRSGs, there may be a single evaporator and steam drum or there may be two or three evaporators and steam drums producing steam at two or three different pressures. Figure 9 depicts an HRSG using two evaporators and steam drums to produce high pressure steam and low pressure steam, with each evaporator and steam drum having an associated economizer and superheater. In some cases,  supplementary fuel firing  may be provided in an additional section at the front end of the HRSG to provide additional heat and higher temperature gas. Figure 7 above shows the actual physical appearance of horizontal HRSGs in a combined cycle power plant.
|align=left|= plume rise, in m
 
|-
{| border="0" align="center"
!align=right| F<sup>&nbsp;</sup> <!-- The HTML is needed to line up characters. Do not remove.-->
|
|align=left|= buoyancy factor, in m<sup>4</sup>s<sup>−3</sup>  
|{{Image|Two Pressure HRSG.png|left|302px|Figure 8: Schematic diagram of a typical combined cycle power plant}}
|-
|{{Image|HRSG Layout.png|right|395px|Figure 9: Layout of typical HRSG in a combined cycle power plant}}
!align=right| x
|align=left|= downwind distance from plume source, in m
|-
!align=right| x<sub>f</sub>
|align=left|= downwind distance from plume source to point of maximum plume rise, in m
|-
!align=right| u
|align=left|= windspeed at actual stack height, in m/s
|-
!align=right| s<sup>&nbsp;</sup> <!-- The HTML is needed to line up characters. Do not remove.-->
|align=left|= stability parameter, in s<sup>−2</sup>
|}
|}
The above parameters used in the Briggs' equations are discussed in Beychok's book.<ref name=Beychok/>


There are a number of other HRSG applications. For example, some gas turbines are designed to burn liquid fuels (rather than fuel gas) such as [[petroleum naphtha]] or [[diesel oil]]<ref>{{cite book|author=Meherwan Boyce|title=Gas Turbine Engineering Handbook|edition=2nd Edition|publisher=Gulf Professional Publishing|year=2002|id=ISBN 0-88415732-6}}</ref> and others burn the [[syngas]] (synthetic gas) produced by [[coal gasification]] in an [[integrated gasification combined cycle]] plant commonly referred to as an IGCC plant. As another example, a combined cycle power plant may use a [[diesel engine]] rather than a gas turbine. In almost all such other applications, HSRGs are used to produce steam to be used for power generation.
==References==
{{reflist}}


===Nuclear power plant steam generation===
== Further reading==


{{Image|Nuclear Power.png|right|400px|Figure 10: The two most common types of nuclear power plants}}
*{{cite book | author=M.R. Beychok| title=Fundamentals Of Stack Gas Dispersion | edition=4th Edition | publisher=author-published | year=2005 | isbn=0-9644588-0-2}}


{{main|Nuclear power plant}}
*{{cite book | author=K.B. Schnelle and P.R. Dey| title=Atmospheric Dispersion Modeling Compliance Guide  | edition=1st Edition| publisher=McGraw-Hill Professional | year=1999 | isbn=0-07-058059-6}}
The [[Calder Hall nuclear power station|Calder Hall]] nuclear power plant in the [[United Kingdom]] was the world's first nuclear power plant to produce electricity in commercial quantities and began operations in 1956.<ref name=Kragh>{{cite book|author= Helge Kragh|title=Quantum Generations: A History of Physics in the Twentieth Century|publisher=Princeton University Press|year=1999|pages=page 286|id =ISBN 0-691-09552-3}}</ref> The [[Shippingport Atomic Power Station]] in [[Shippingport, Pennsylvania]] was the first commercial nuclear power plant in the [[United States]] and was opened in 1957.<ref>[http://www.eia.doe.gov/cneaf/nuclear/page/nuc_reactors/superla.html Unique reactors] From the website of the [[Energy Information Administration]], (EIA).</ref> As of 2007, There were more than 430 operational nuclear power plants worldwide and they produced about 15% of the world's electricity.<ref>[http://www.iaea.org/cgi-bin/db.page.pl/pris.oprconst.htm The Number of Reactors in Operation Worldwide] From the website of the [[International Atomic Energy Agency]] (IAEA).</ref><ref>[http://www.iaea.org/NewsCenter/News/2008/np2008.html Projections Continue to Rise for Nuclear Power, but Relative Generation Share Declines] From the Website of the International Atomic Energy Agency (IAEA).</ref>


There are a good many different types of nuclear power plants, but the two most prevalent operational plants use either a  '''''Boiling Water Reactor (BWR)''''' or a '''''Pressurized Water Reactor (PWR)'''''.<ref name=WNO>[http://www.world-nuclear.org/info/default.aspx?id=414&terms=PWR+and+BWR Nuclear Reactors] From the website of the [[World Nuclear Organization]] (WNO).</ref> Figure 10 presents a schematic diagram of how steam is generated in those two types of nuclear power plants:
*{{cite book | author=D.B. Turner| title=Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling | edition=2nd Edition | publisher=CRC Press | year=1994 | isbn=1-56670-023-X}}


*In the BWR, the nuclear reactor's coolant water is boiled into saturated steam within the reactor itself by absorbing the heat created by the [[nuclear fission]] reaction. The steam produced within the reactor is generally at a pressure of about 70 to 75 bar and a temperature of about 290 to 300 °C and is routed to the turbine-generators outside the reactor containment structure for conversion into electricity.
*{{cite book | author= S.P. Arya| title=Air Pollution Meteorology and Dispersion | edition=1st Edition | publisher=Oxford University Press | year=1998 | isbn=0-19-507398-3}}


*In the PWR, the reactor's coolant water is pressurized up to as much as 160 bar of pressure and 330 °C of temperature and there is no boiling within the reactor. The hot, pressurized coolant water flows through heat exchange tubes within a steam generator where it exchanges heat with the generator's feedwater and converts it into steam. The reactor coolant water is then pumped back to the reactor. The top section of the generator is a steam-water separator. The flow of coolant water from the reactor through the steam generator and back to reactor is referred to as the ''primary loop''. The flow of feedwater into the steam generator, conversion of the feedwater into steam , flowing the steam through the turbine-generators located outside the containment structure, condensing of the exhaust steam from the turbine-generators and recycling of the condensed steam as feedwater to the steam generator is referred to as the ''secondary loop''.  All of the ''primary loop'' is located within the nuclear reactor containment structure. The ''secondary loop'' is partially within the containment structure and partially outside the structure.
*{{cite book | author=R. Barrat| title=Atmospheric Dispersion Modelling | edition=1st Edition | publisher=Earthscan Publications | year=2001 | isbn=1-85383-642-7}}


Thus, in essence, the steam generator in a BWR nuclear reactor is the reactor itself and the steam generator in a PWR reactor is simply a vertical heat exchanger. Both the BWR and PWR plants generate saturated steam at essentially the same temperature and pressure, and both may use either ''[[light water]]'' (ordinary water) or ''[[heavy water]]'' as the reactor coolant.<ref>Virtually all of the [[hydrogen]] in light water (ordinary water) is the [[protium isotope]] of hydrogen. In heavy water, the protium isotope has been replaced by the [[deuterium isotope]] of hydrogen. Deuterium is a stable isotope of hydrogen with a natural abundance in the oceans of [[Earth]] of approximately one atom in 6500 of hydrogen (~154 PPM).</ref> About 65% of the total power generated by nuclear power plants is from PWR reactor systems.<ref name=WNO/>
*{{cite book | author=S.R. Hanna and R.E. Britter| title=Wind Flow and Vapor Cloud Dispersion at Industrial and Urban Sites  | edition=1st Edition | publisher=Wiley-American Institute of Chemical Engineers | year=2002 | isbn=0-8169-0863-X}}


{{Image|Solar Power Plant.png|right|350px|Figure 10: Schematic flow diagram of the SEGS concentrated solar power plants in the Mojave Desert.}}
*{{cite book | author=P. Zannetti| title=Air pollution modeling : theories, computational methods, and available software | edition= | publisher= Van Nostrand Reinhold | year=1990 | isbn=0-442-30805-1 }}
 
===Solar power steam generators===  
 
Solar power is the generation of electricity from sunlight and it can be accomplished with [[photovoltaics]] which uses an array of cells containing material that converts sunlight directly into electricity. This method does not involve the generation of steam.
 
Solar power can also be accomplished indirectly by using lenses or mirrors to focus [[solar radiation]] into a concentrated beam of heat. The concentrated beam is then used as a heat source to generate steam for conversion into electric power. This method is referred to as '''''concentrated solar power''''' (CSP) and there are a number different designs for concentrating solar radiation. The various designs all operate on the simple principle of reflecting and concentrating sunlight and vary from one another by the use of different types of mirrors.<ref>[http://www.solarpaces.org/CSP_Technology/csp_technology.htm CSP - How It Works]</ref><ref>[http://www.desertec-usa.org/content/primer-csp.html An Explanation of Concentrating Solar Power CSP - How it works]</ref>
As of 2009, of all the various CSP plants in operation worldwide, the largest ones are the  '''''solar energy generating systems''''' (SEGS) plants  operating in the [[Mojave Desert]]. Figure 11 presents a schematic flow diagram of the SEGS plants which use large fields of [[parallel trough mirror]]s. The mirrors focus their concentrated beam of heat on pipes located above the center of the troughs and containing a circulating [[heat transfer fluid]] (HTF) that run the length of the mirror fields. The HTF entering the mirror field is at about 270 °C and it is heated to about 390 °C as it exits the mirror field. The hot HTD is then used in a series of heat exchangers as shown in Figure 11 to generate superheated steam at a pressure of about 100 bar and a temperature of about 375°C. The superheated steam is then routed to steam turbines that drive electricity generators in the same types and arrangement of equipment as used in conventional fuel-fired steam generators.
 
There were nine SEGS plants constructed 
 
 
{|border="0" align="center"
|{{Image|SEGS Troughs.jpg|left|425px|Figure 11: Parabolic trough mirrors used in concentrated solar power plants}}
|{{Image|SEGS Mojave.jpg|right|350px|Fields of parabolic trough mirrors at the SEGS solar power plants in the Mojave Desert}}
|}
 
==References==
{{reflist}}

Latest revision as of 04:25, 22 November 2023


The account of this former contributor was not re-activated after the server upgrade of March 2022.


Industrial air pollution source

Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in the ambient atmosphere. It is performed with computer programs that solve the mathematical equations and algorithms which simulate the pollutant dispersion. The dispersion models are used to estimate or to predict the downwind concentration of air pollutants emitted from sources such as industrial plants, vehicular traffic or accidental chemical releases.

Such models are important to governmental agencies tasked with protecting and managing the ambient air quality. The models are typically employed to determine whether existing or proposed new industrial facilities are or will be in compliance with the National Ambient Air Quality Standards (NAAQS) in the United States or similar regulations in other nations. The models also serve to assist in the design of effective control strategies to reduce emissions of harmful air pollutants. During the late 1960's, the Air Pollution Control Office of the U.S. Environmental Protection Agency (U.S. EPA) initiated research projects to develop models for use by urban and transportation planners.[1]

Air dispersion models are also used by emergency management personnel to develop emergency plans for accidental chemical releases. The results of dispersion modeling, using worst case accidental releases and meteorological conditions, can provide estimated locations of impacted areas and be used to determine appropriate protective actions. At industrial facilities in the United States, this type of consequence assessment or emergency planning is required under the Clean Air Act (CAA) codified in Part 68 of Title 40 of the Code of Federal Regulations.

The dispersion models vary depending on the mathematics used to develop the model, but all require the input of data that may include:

  • Meteorological conditions such as wind speed and direction, the amount of atmospheric turbulence (as characterized by what is called the "stability class"), the ambient air temperature, the height to the bottom of any inversion aloft that may be present, cloud cover and solar radiation.
  • The emission parameters such the type of source (i.e., point, line or area), the mass flow rate, the source location and height, the source exit velocity, and the source exit temperature.
  • Terrain elevations at the source location and at receptor locations, such as nearby homes, schools, businesses and hospitals.
  • The location, height and width of any obstructions (such as buildings or other structures) in the path of the emitted gaseous plume as well as the terrain surface roughness (which may be characterized by the more generic parameters "rural" or "city" terrain).

Many of the modern, advanced dispersion modeling programs include a pre-processor module for the input of meteorological and other data, and many also include a post-processor module for graphing the output data and/or plotting the area impacted by the air pollutants on maps. The plots of areas impacted usually include isopleths showing areas of pollutant concentrations that define areas of the highest health risk. The isopleths plots are useful in determining protective actions for the public and first responders.

The atmospheric dispersion models are also known as atmospheric diffusion models, air dispersion models, air quality models, and air pollution dispersion models.

Atmospheric layers

Discussion of the layers in the Earth's atmosphere is needed to understand where airborne pollutants disperse in the atmosphere. The layer closest to the Earth's surface is known as the troposphere. It extends from sea-level up to a height of about 18 km and contains about 80 percent of the mass of the overall atmosphere. The stratosphere is the next layer and extends from 18 km up to about 50 km. The third layer is the mesosphere which extends from 50 km up to about 80 km. There are other layers above 80 km, but they are insignificant with respect to atmospheric dispersion modeling.

The lowest part of the troposphere is called the atmospheric boundary layer (ABL) or the planetary boundary layer (PBL) and extends from the Earth's surface up to about 1.5 to 2.0 km in height. The air temperature of the atmospheric boundary layer decreases with increasing altitude until it reaches what is called the inversion layer (where the temperature increases with increasing altitude) that caps the atmospheric boundary layer. The upper part of the troposphere (i.e., above the inversion layer) is called the free troposphere and it extends up to the 18 km height of the troposphere.

The ABL is the most important layer with respect to the emission, transport and dispersion of airborne pollutants. The part of the ABL between the Earth's surface and the bottom of the inversion layer is known as the mixing layer. Almost all of the airborne pollutants emitted into the ambient atmosphere are transported and dispersed within the mixing layer. Some of the emissions penetrate the inversion layer and enter the free troposphere above the ABL.

In summary, the layers of the Earth's atmosphere from the surface of the ground upwards are: the ABL made up of the mixing layer capped by the inversion layer; the free troposphere; the stratosphere; the mesosphere and others. Many atmospheric dispersion models are referred to as boundary layer models because they mainly model air pollutant dispersion within the ABL. To avoid confusion, models referred to as mesoscale models have dispersion modeling capabilities that can extend horizontally as much as a few hundred kilometres. It does not mean that they model dispersion in the mesosphere.

Gaussian air pollutant dispersion equation

The technical literature on air pollution dispersion is quite extensive and dates back to the 1930s and earlier. One of the early air pollutant plume dispersion equations was derived by Bosanquet and Pearson.[2] Their equation did not assume Gaussian distribution nor did it include the effect of ground reflection of the pollutant plume.

Sir Graham Sutton derived an air pollutant plume dispersion equation in 1947[3][4] which did include the assumption of Gaussian distribution for the vertical and crosswind dispersion of the plume and also included the effect of ground reflection of the plume.

Under the stimulus provided by the advent of stringent environmental control regulations, there was an immense growth in the use of air pollutant plume dispersion calculations between the late 1960s and today. A great many computer programs for calculating the dispersion of air pollutant emissions were developed during that period of time and they were commonly called "air dispersion models". The basis for most of those models was the Complete Equation For Gaussian Dispersion Modeling Of Continuous, Buoyant Air Pollution Plumes shown below:[5][6]


where:  
= crosswind dispersion parameter
  =
= vertical dispersion parameter =
= vertical dispersion with no reflections
  =
= vertical dispersion for reflection from the ground
  =
= vertical dispersion for reflection from an inversion aloft
  =
           
           
           
= concentration of emissions, in g/m³, at any receptor located:
            x meters downwind from the emission source point
            y meters crosswind from the emission plume centerline
            z meters above ground level
= source pollutant emission rate, in g/s
= horizontal wind velocity along the plume centerline, m/s
= height of emission plume centerline above ground level, in m
= vertical standard deviation of the emission distribution, in m
= horizontal standard deviation of the emission distribution, in m
= height from ground level to bottom of the inversion aloft, in m
= the exponential function

The above equation not only includes upward reflection from the ground, it also includes downward reflection from the bottom of any inversion lid present in the atmosphere.

The sum of the four exponential terms in converges to a final value quite rapidly. For most cases, the summation of the series with m = 1, m = 2 and m = 3 will provide an adequate solution.

and are functions of the atmospheric stability class (i.e., a measure of the turbulence in the ambient atmosphere) and of the downwind distance to the receptor. The two most important variables affecting the degree of pollutant emission dispersion obtained are the height of the emission source point and the degree of atmospheric turbulence. The more turbulence, the better the degree of dispersion.

Whereas older models rely on stability classes for the determination of and , more recent models increasingly rely on Monin-Obukhov similarity theory to derive these parameters.

Briggs plume rise equations

The Gaussian air pollutant dispersion equation (discussed above) requires the input of H which is the pollutant plume's centerline height above ground level. H is the sum of Hs (the actual physical height of the pollutant plume's emission source point) plus ΔH (the plume rise due the plume's buoyancy).

Visualization of a buoyant Gaussian air pollutant dispersion plume

To determine ΔH, many if not most of the air dispersion models developed between the late 1960s and the early 2000s used what are known as "the Briggs equations." G.A. Briggs first published his plume rise observations and comparisons in 1965.[7] In 1968, at a symposium sponsored by CONCAWE (a Dutch organization), he compared many of the plume rise models then available in the literature.[8] In that same year, Briggs also wrote the section of the publication edited by Slade[9] dealing with the comparative analyses of plume rise models. That was followed in 1969 by his classical critical review of the entire plume rise literature,[10] in which he proposed a set of plume rise equations which have become widely known as "the Briggs equations". Subsequently, Briggs modified his 1969 plume rise equations in 1971 and in 1972.[11][12]

Briggs divided air pollution plumes into these four general categories:

  • Cold jet plumes in calm ambient air conditions
  • Cold jet plumes in windy ambient air conditions
  • Hot, buoyant plumes in calm ambient air conditions
  • Hot, buoyant plumes in windy ambient air conditions

Briggs considered the trajectory of cold jet plumes to be dominated by their initial velocity momentum, and the trajectory of hot, buoyant plumes to be dominated by their buoyant momentum to the extent that their initial velocity momentum was relatively unimportant. Although Briggs proposed plume rise equations for each of the above plume categories, it is important to emphasize that "the Briggs equations" which become widely used are those that he proposed for bent-over, hot buoyant plumes.

In general, Briggs's equations for bent-over, hot buoyant plumes are based on observations and data involving plumes from typical combustion sources such as the flue gas stacks from steam-generating boilers burning fossil fuels in large power plants. Therefore the stack exit velocities were probably in the range of 20 to 100 ft/s (6 to 30 m/s) with exit temperatures ranging from 250 to 500 °F (120 to 260 °C).

A logic diagram for using the Briggs equations[5] to obtain the plume rise trajectory of bent-over buoyant plumes is presented below:

BriggsLogic.png
where:  
Δh = plume rise, in m
F  = buoyancy factor, in m4s−3
x = downwind distance from plume source, in m
xf = downwind distance from plume source to point of maximum plume rise, in m
u = windspeed at actual stack height, in m/s
s  = stability parameter, in s−2

The above parameters used in the Briggs' equations are discussed in Beychok's book.[5]

References

  1. J.C. Fensterstock et al, "Reduction of air pollution potential through environmental planning", JAPCA, Vol. 21, No. 7, 1971.
  2. C.H. Bosanquet and J.L. Pearson, "The spread of smoke and gases from chimneys", Trans. Faraday Soc., 32:1249, 1936.
  3. O.G. Sutton, "The problem of diffusion in the lower atmosphere", QJRMS, 73:257, 1947.
  4. O.G. Sutton, "The theoretical distribution of airborne pollution from factory chimneys", QJRMS, 73:426, 1947.
  5. 5.0 5.1 5.2 M.R. Beychok (2005). Fundamentals Of Stack Gas Dispersion, 4th Edition. author-published. ISBN 0-9644588-0-2. .
  6. D. B. Turner (1994). Workbook of atmospheric dispersion estimates: an introduction to dispersion modeling, 2nd Edition. CRC Press. ISBN 1-56670-023-X. .
  7. G.A. Briggs, "A plume rise model compared with observations", JAPCA, 15:433–438, 1965.
  8. G.A. Briggs, "CONCAWE meeting: discussion of the comparative consequences of different plume rise formulas", Atmos. Envir., 2:228–232, 1968.
  9. D.H. Slade (editor), "Meteorology and atomic energy 1968", Air Resources Laboratory, U.S. Dept. of Commerce, 1968.
  10. G.A. Briggs, "Plume Rise", USAEC Critical Review Series, 1969.
  11. G.A. Briggs, "Some recent analyses of plume rise observation", Proc. Second Internat'l. Clean Air Congress, Academic Press, New York, 1971.
  12. G.A. Briggs, "Discussion: chimney plumes in neutral and stable surroundings", Atmos. Envir., 6:507–510, 1972.

Further reading

  • M.R. Beychok (2005). Fundamentals Of Stack Gas Dispersion, 4th Edition. author-published. ISBN 0-9644588-0-2. 
  • K.B. Schnelle and P.R. Dey (1999). Atmospheric Dispersion Modeling Compliance Guide, 1st Edition. McGraw-Hill Professional. ISBN 0-07-058059-6. 
  • D.B. Turner (1994). Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling, 2nd Edition. CRC Press. ISBN 1-56670-023-X. 
  • S.P. Arya (1998). Air Pollution Meteorology and Dispersion, 1st Edition. Oxford University Press. ISBN 0-19-507398-3. 
  • R. Barrat (2001). Atmospheric Dispersion Modelling, 1st Edition. Earthscan Publications. ISBN 1-85383-642-7. 
  • S.R. Hanna and R.E. Britter (2002). Wind Flow and Vapor Cloud Dispersion at Industrial and Urban Sites, 1st Edition. Wiley-American Institute of Chemical Engineers. ISBN 0-8169-0863-X. 
  • P. Zannetti (1990). Air pollution modeling : theories, computational methods, and available software. Van Nostrand Reinhold. ISBN 0-442-30805-1.