Tensor product: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Giovanni Antonio DiMatteo
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{subpages}}
The tensor product is a bifunctor in the category of modules over a fixed ring <math>R</math>. In the subcategory of algebras over <math>R</math>, the tensor product is just the cofibered product over <math>R</math>.  
The tensor product is a bifunctor in the category of modules over a fixed ring <math>R</math>. In the subcategory of algebras over <math>R</math>, the tensor product is just the cofibered product over <math>R</math>.  


Line 13: Line 14:
==Tensor products in linear algebra==
==Tensor products in linear algebra==


[[Category:CZ Live]]
[[Category:Suggestion Bot Tag]]
[[Category:Mathematics Workgroup]]
[[Category:Stub Articles]]

Latest revision as of 16:00, 25 October 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The tensor product is a bifunctor in the category of modules over a fixed ring . In the subcategory of algebras over , the tensor product is just the cofibered product over .

Definition

The tensor product of two -modules and , denoted by , is an -module satisfying the universal property

Functoriality

The functor is right-exact from the category of (right) to the category of -modules.

The derived functors .

Tensor products in linear algebra