Hall-Littlewood polynomial: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch m (remove WPmarkup; subpages) |
mNo edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 7: | Line 7: | ||
==References== | ==References== | ||
* {{cite book | author=I.G. Macdonald | authorlink=Ian G. Macdonald | title=Symmetric Functions and Hall Polynomials | publisher=Oxford University Press | pages=101-104 | year=1979 | isbn=0-19-853530-9 }} | * {{cite book | author=I.G. Macdonald | authorlink=Ian G. Macdonald | title=Symmetric Functions and Hall Polynomials | publisher=Oxford University Press | pages=101-104 | year=1979 | isbn=0-19-853530-9 }} | ||
* {{cite journal | author=D.E. Littlewood | title=On certain symmetric functions | journal=Proc. London Math. Soc. | volume=43 | year=1961 | pages=485-498 }} | * {{cite journal | author=D.E. Littlewood | title=On certain symmetric functions | journal=Proc. London Math. Soc. | volume=43 | year=1961 | pages=485-498 }}[[Category:Suggestion Bot Tag]] | ||
Latest revision as of 11:00, 25 August 2024
![](http://s9.addthis.com/button1-share.gif)
In mathematics, the Hall–Littlewood polynomials encode combinatorial data relating to the representations of the general linear group. They are named for Philip Hall and Dudley E. Littlewood.
See also
References
- I.G. Macdonald (1979). Symmetric Functions and Hall Polynomials. Oxford University Press, 101-104. ISBN 0-19-853530-9.
- D.E. Littlewood (1961). "On certain symmetric functions". Proc. London Math. Soc. 43: 485-498.