File:FilogbigT.jpg: Difference between revisions
imported>Dmitrii Kouznetsov ({{Image_Details|user |description = Complex map of function Filog. ==Semantics of Filog== $\mathrm{Filog}(z)$ expresses the fixed point of logarithm to base $b\!=\!\exp(z)$. Another fixed point to the same base can be expressed with $\mathrm{Filog}(z^*)^*$ ==Algorithm of evaluation== Filog is expressed through the Tania function: : $\displaystyle \mathrm{Filog}(z)= \frac{\mathrm{Tania}\!\big(\ln(z)-1-\mathrm{i}\big)}{-z}$ ==Representation of the function== $f=...) |
imported>Dmitrii Kouznetsov (→Summary: There is some incompatibility between the format in TORI and that of the Citizendium. I save that I load and try to understand what is the matter. ~~~~) |
||
Line 1: | Line 1: | ||
== Summary == | == Summary == | ||
{{Image_Details|user | {{Image_Details|user | ||
|description = [[Complex map]] of function [[Filog]]. | |description = [[Complex map]] of function [[Filog]]. | ||
<math>\mathrm{Filog}(z)</math> expresses the [[fixed point]] of [[logarithm]] to base <math>b\!=\!\exp(z)</math>. | |||
Another fixed point to the same base can be expressed with | |||
<math>\mathrm{Filog}(z^*)^*</math> | |||
==Algorithm of evaluation== | |||
[[Filog]] is expressed through the [[Tania function]]: | |||
: <math>\displaystyle \mathrm{Filog}(z)= \frac{\mathrm{Tania}\!\big(\ln(z)-1-\mathrm{i}\big)}{-z}</math> | |||
==Representation of the function== | |||
<math>f=\mathrm{Filog}(x+\mathrm{i} y)</math> is shown in the <math>x,y</math> plane with | |||
levels <math>u=\Re(f)=\mathrm{cont}</math> and | |||
levels <math>v=\Im(f)=\mathrm{cont}</math>; thick lines correspond to the integer values. | |||
The additional thin gridlines <math>x\!=\!\exp(-1)</math> and <math>x\!=\!\pi/2</math> are drawn. The first of them goes through the branchpoint <math>z=1/\mathrm e</math>, which is the branch point; the second goes through the point | |||
<math>z=\pi/2</math>, where the fixed points are </math>\pm \mathrm i</math>. | |||
==Properties of the function== | |||
<math>\mathrm{Filog}(z)</math> has two singularities at | |||
<math>z\!=\!0</math> and at | |||
<math>z\!=\!\exp(-1)</math>; the cutline is directed to the negative part of the real axis. | |||
Except the cutline, the function is holomorphic. At the real values of the argument <math>0\!<\!z\!<\!\exp(-1)</math>, both at the upper side of the cut and at the lower side of the cut, the function has real values; in particular, at | |||
<math>z=\ln\big(\sqrt{2}\big)</math>, there values are integer | |||
<ref name="sqrt2"> | |||
http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756. | |||
</ref>: | |||
: <math>\mathrm{Filog}(z+\mathrm i o)=2</math> | |||
: <math>\mathrm{Filog}(z-\mathrm i o)=4</math> | |||
Approaching the branchpoint, the jump at the cut vanishes: | |||
: <math> \displaystyle \lim_{x\rightarrow 1/\mathrm e} \mathrm{Filog}(x+\mathrm i o)= \lim_{x\rightarrow 1/\mathrm e} \mathrm{Filog}(x-\mathrm i o)= \mathrm e</math> | |||
==Generator of curves== | |||
// Files [[ado.cin]], [[conto.cin]] and [[filog.cin]] should be loaded to the working directory for the compilation of the [[C++]] code below: | |||
#include <math.h> | |||
#include <stdio.h> | |||
#include <stdlib.h> | |||
#define DB double | |||
#define DO(x,y) for(x=0;x<y;x++) | |||
using namespace std; | |||
#include <complex> | |||
typedef complex<double> z_type; | |||
#define Re(x) x.real() | |||
#define Im(x) x.imag() | |||
#define I z_type(0.,1.) | |||
#include "conto.cin" | |||
#include "filog.cin" | |||
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; | |||
int M=400,M1=M+1; | |||
int N=401,N1=N+1; | |||
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. | |||
char v[M1*N1]; // v is working array | |||
FILE *o;o=fopen("filogbig.eps","w");ado(o,2004,2004); | |||
fprintf(o,"1002 1002 translate\n 100 100 scale\n"); | |||
DO(m,M1) X[m]=-10.+.05*(m-.2); | |||
DO(n,200)Y[n]=-10.+.05*n; | |||
Y[200]=-.0001; | |||
Y[201]= .0001; | |||
for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.); | |||
for(m=-10;m<11;m++){M(m,-10)L(m,10)} | |||
for(n=-10;n<11;n++){M( -10,n)L(10,n)} | |||
fprintf(o,".005 W 0 0 0 RGB S\n"); | |||
M(exp(-1.),-1) | |||
L(exp(-1.), 1) | |||
M(M_PI/2.,-1) | |||
L(M_PI/2., 1) | |||
fprintf(o,".003 W 0 0 0 RGB S\n"); | |||
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} | |||
DO(m,M1){x=X[m]; //printf("%5.2f\n",x); | |||
DO(n,N1){y=Y[n]; z=z_type(x,y); | |||
// c=Tania(z_type(-1.,-M_PI)+log(z))/(-z); | |||
c=Filog(z); | |||
p=Re(c);q=Im(c); | |||
if(p>-15. && p<15. && q>-15. && q<15. ){ g[m*N1+n]=p;f[m*N1+n]=q;} | |||
}} | |||
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=3.;q=1; | |||
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".001 W 0 .6 0 RGB S\n"); | |||
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".001 W .9 0 0 RGB S\n"); | |||
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".001 W 0 0 .9 RGB S\n"); | |||
for(m=1;m<14;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".004 W .9 0 0 RGB S\n"); | |||
for(m=1;m<14;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".004 W 0 0 .9 RGB S\n"); | |||
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".004 W .6 0 .6 RGB S\n"); | |||
for(m=-11;m<14;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".004 W 0 0 0 RGB S\n"); | |||
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); | |||
system("epstopdf filogbig.eps"); | |||
system( "open filogbig.pdf"); //for mac | |||
// getchar(); system("killall Preview"); // for mac | |||
// Copyleft 2012 by Dmitrii Kouznetsov | |||
} | |||
==Generator of labels== | |||
For the compilation of the [[Latex]] source below, the curves of the [[complex map]] should be already generated and stored in file | |||
filogbig.pdf with the [[C++]] code above. | |||
<nowiki> | |||
\documentclass[12pt]{article} %<br> | |||
\usepackage{geometry} %<br> | |||
\paperwidth 2074pt %<br> | |||
\paperheight 2060pt %<br> | |||
\topmargin -96pt %<br> | |||
\oddsidemargin -80pt %<br> | |||
\textwidth 2090pt %<br> | |||
\textheight 2066pt %<br> | |||
\usepackage{graphicx} %<br> | |||
\usepackage{rotating} %<br> | |||
\newcommand \rot {\begin{rotate}} %<br> | |||
\newcommand \ero {\end{rotate}} %<br> | |||
\newcommand \rme {\mathrm{e}} %<br> | |||
\newcommand \sx {\scalebox} %<br> | |||
\begin{document} %<br> | |||
\begin{picture}(2018,2040) %<br> | |||
\put(50,40){\includegraphics{filogbig}} %<br> | |||
\put(16,2024){\sx{4.3}{</math>y</math>}} %<br> | |||
\put(16,1828){\sx{4.2}{</math>8</math>}} %<br> | |||
\put(16,1628){\sx{4.2}{</math>6</math>}} %<br> | |||
\put(16,1428){\sx{4.2}{</math>4</math>}} %<br> | |||
\put(16,1228){\sx{4.2}{</math>2</math>}} %<br> | |||
\put(16,1028){\sx{4.2}{</math>0</math>}} %<br> | |||
\put(-11,828){\sx{4}{</math>-2</math>}} %<br> | |||
\put(-11,628){\sx{4}{</math>-4</math>}} %<br> | |||
\put(-11,428){\sx{4}{</math>-6</math>}} %<br> | |||
\put(-11,228){\sx{4}{</math>-8</math>}} %<br> | |||
\put(-8,0){\sx{4}{</math>-10</math>}} %<br> | |||
\put(204,0){\sx{4}{</math>-8</math>}} %<br> | |||
\put(404,0){\sx{4}{</math>-6</math>}} %<br> | |||
\put(604,0){\sx{4}{</math>-4</math>}} %<br> | |||
\put(804,0){\sx{4}{</math>-2</math>}} %<br> | |||
\put(1046,0){\sx{4}{</math>0</math>}} %<br> | |||
\put(1246,0){\sx{4}{</math>2</math>}} %<br> | |||
\put(1446,0){\sx{4}{</math>4</math>}} %<br> | |||
\put(1646,0){\sx{4}{</math>6</math>}} %<br> | |||
\put(1846,0){\sx{4}{</math>8</math>}} %<br> | |||
\put(2036,0){\sx{4.2}{</math>x</math>}} %<br> | |||
%\put(40, 2){\sx{.8}{</math>1/\rme</math>}} %<br> | |||
%\put(108, 0){\sx{1}{</math>1</math>}} %<br> | |||
%\put(164, 2){\sx{.8}{</math>\pi/2</math>}} %<br> | |||
\put(1600,1480){\sx{6}{\rot{55}</math>u\!=\!0</math> \ero} } %<br> | |||
\put(270,1240){\sx{6}{\rot{60}</math>u\!=\!0.2</math> \ero} } %<br> | |||
\put(800,1070){\sx{6}{\rot{55}</math>u\!=\!0.4</math> \ero} } %<br> | |||
\put(90,910){\sx{6}{\rot{16}</math>u\!=\!0</math> \ero} } %<br> | |||
\put(286,470){\sx{6}{\rot{70}</math>u\!=\!-0.2</math> \ero} } %<br> | |||
\put(1686,970){\sx{6}{\rot{-30}</math>u\!=\!-0.2</math> \ero} } %<br> | |||
\put(1686,610){\sx{6}{\rot{26}</math>v\!=\!0.2</math> \ero} } %<br> | |||
\put(1316,210){\sx{6}{\rot{-56}</math>v\!=\!0</math> \ero} } %<br> | |||
\put( 330,444){\sx{6}{\rot{5}</math>v\!=\!-0.4</math> \ero} } %<br> | |||
\put( 700,10){\sx{6}{\rot{56}</math>v\!=\!-0.2</math> \ero} } %<br> | |||
\end{picture} %<br> | |||
\end{document} %<br> | |||
%Copyleft 2012 by Dmitrii Kouznetsov | |||
</nowiki> | |||
The resulting [[PDF]] file is converted to [[PNG]] with 100 pixels/inch resolution. | |||
==Rwfwewnces== | |||
<references/> | |||
==Keywords== | |||
[[Fixed point]], | |||
[[Filog]], | |||
[[Tania function]], | |||
[[Tetration]], | |||
[[Complex map]] | |||
|author = [[User:Dmitrii Kouznetsov|Dmitrii Kouznetsov]] | |author = [[User:Dmitrii Kouznetsov|Dmitrii Kouznetsov]] | ||
|date-created = 2012.03.08 | |date-created = 2012.03.08 | ||
Line 7: | Line 180: | ||
|notes = I tried to save it as http://en.citizendium.org/wiki/File:FilogmapT.png | |notes = I tried to save it as http://en.citizendium.org/wiki/File:FilogmapT.png | ||
but it does not load as it is expected.. | but it does not load as it is expected.. | ||
|versions = File:FilogmapT.png and http://tori.ils.uec.ac.jp/TORI/index.php/File:Filogbigmap100.png | |versions = [[File:FilogmapT.png|30px]] and http://tori.ils.uec.ac.jp/TORI/index.php/File:Filogbigmap100.png | ||
}} | }} | ||
== Licensing == | == Licensing == | ||
{{CC|by|3.0}} | {{CC|by|3.0}} |
Revision as of 22:03, 7 March 2012
Summary
Title / Description
|
Complex map of function Filog.
expresses the fixed point of logarithm to base . Another fixed point to the same base can be expressed with
Algorithm of evaluationFilog is expressed through the Tania function: Representation of the functionis shown in the plane with levels and levels ; thick lines correspond to the integer values. The additional thin gridlines and are drawn. The first of them goes through the branchpoint , which is the branch point; the second goes through the point , where the fixed points are </math>\pm \mathrm i</math>. Properties of the functionhas two singularities at and at ; the cutline is directed to the negative part of the real axis. Except the cutline, the function is holomorphic. At the real values of the argument , both at the upper side of the cut and at the lower side of the cut, the function has real values; in particular, at , there values are integer [1]: Approaching the branchpoint, the jump at the cut vanishes: Generator of curves// Files ado.cin, conto.cin and filog.cin should be loaded to the working directory for the compilation of the C++ code below: #include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin" #include "filog.cin" main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; int M=400,M1=M+1; int N=401,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("filogbig.eps","w");ado(o,2004,2004); fprintf(o,"1002 1002 translate\n 100 100 scale\n"); DO(m,M1) X[m]=-10.+.05*(m-.2); DO(n,200)Y[n]=-10.+.05*n; Y[200]=-.0001; Y[201]= .0001; for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.); for(m=-10;m<11;m++){M(m,-10)L(m,10)} for(n=-10;n<11;n++){M( -10,n)L(10,n)} fprintf(o,".005 W 0 0 0 RGB S\n"); M(exp(-1.),-1) L(exp(-1.), 1) M(M_PI/2.,-1) L(M_PI/2., 1) fprintf(o,".003 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); // c=Tania(z_type(-1.,-M_PI)+log(z))/(-z); c=Filog(z); p=Re(c);q=Im(c); if(p>-15. && p<15. && q>-15. && q<15. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
---|---|
Citizendium author & Copyright holder
|
Please edit this page and add the username of the Citizen who owns this image. |
Date created
|
Please edit this page and add the date of creation, or an estimate thereof. |
Country of first publication
|
Please edit this page and add the country of first publication, or note that it is unknown. |
Notes
|
You can edit this page and add notes here which may be useful to people who wish to re-use this media. |
Other versions
|
If there are other versions of this media on CZ, please list them here. |
Using this image on CZ
|
| , then copy the code below to add this image to a Citizendium article, changing the size, alignment, and caption as necessary.
Please send email to manager A T citizendium.org .
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=3.;q=1; for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".001 W 0 .6 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".001 W .9 0 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".001 W 0 0 .9 RGB S\n"); for(m=1;m<14;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".004 W .9 0 0 RGB S\n"); for(m=1;m<14;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".004 W 0 0 .9 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".004 W .6 0 .6 RGB S\n"); for(m=-11;m<14;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".004 W 0 0 0 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf filogbig.eps"); system( "open filogbig.pdf"); //for mac // getchar(); system("killall Preview"); // for mac // Copyleft 2012 by Dmitrii Kouznetsov }
Generator of labels
For the compilation of the Latex source below, the curves of the complex map should be already generated and stored in file filogbig.pdf with the C++ code above.
\documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \paperwidth 2074pt %<br> \paperheight 2060pt %<br> \topmargin -96pt %<br> \oddsidemargin -80pt %<br> \textwidth 2090pt %<br> \textheight 2066pt %<br> \usepackage{graphicx} %<br> \usepackage{rotating} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \newcommand \rme {\mathrm{e}} %<br> \newcommand \sx {\scalebox} %<br> \begin{document} %<br> \begin{picture}(2018,2040) %<br> \put(50,40){\includegraphics{filogbig}} %<br> \put(16,2024){\sx{4.3}{</math>y</math>}} %<br> \put(16,1828){\sx{4.2}{</math>8</math>}} %<br> \put(16,1628){\sx{4.2}{</math>6</math>}} %<br> \put(16,1428){\sx{4.2}{</math>4</math>}} %<br> \put(16,1228){\sx{4.2}{</math>2</math>}} %<br> \put(16,1028){\sx{4.2}{</math>0</math>}} %<br> \put(-11,828){\sx{4}{</math>-2</math>}} %<br> \put(-11,628){\sx{4}{</math>-4</math>}} %<br> \put(-11,428){\sx{4}{</math>-6</math>}} %<br> \put(-11,228){\sx{4}{</math>-8</math>}} %<br> \put(-8,0){\sx{4}{</math>-10</math>}} %<br> \put(204,0){\sx{4}{</math>-8</math>}} %<br> \put(404,0){\sx{4}{</math>-6</math>}} %<br> \put(604,0){\sx{4}{</math>-4</math>}} %<br> \put(804,0){\sx{4}{</math>-2</math>}} %<br> \put(1046,0){\sx{4}{</math>0</math>}} %<br> \put(1246,0){\sx{4}{</math>2</math>}} %<br> \put(1446,0){\sx{4}{</math>4</math>}} %<br> \put(1646,0){\sx{4}{</math>6</math>}} %<br> \put(1846,0){\sx{4}{</math>8</math>}} %<br> \put(2036,0){\sx{4.2}{</math>x</math>}} %<br> %\put(40, 2){\sx{.8}{</math>1/\rme</math>}} %<br> %\put(108, 0){\sx{1}{</math>1</math>}} %<br> %\put(164, 2){\sx{.8}{</math>\pi/2</math>}} %<br> \put(1600,1480){\sx{6}{\rot{55}</math>u\!=\!0</math> \ero} } %<br> \put(270,1240){\sx{6}{\rot{60}</math>u\!=\!0.2</math> \ero} } %<br> \put(800,1070){\sx{6}{\rot{55}</math>u\!=\!0.4</math> \ero} } %<br> \put(90,910){\sx{6}{\rot{16}</math>u\!=\!0</math> \ero} } %<br> \put(286,470){\sx{6}{\rot{70}</math>u\!=\!-0.2</math> \ero} } %<br> \put(1686,970){\sx{6}{\rot{-30}</math>u\!=\!-0.2</math> \ero} } %<br> \put(1686,610){\sx{6}{\rot{26}</math>v\!=\!0.2</math> \ero} } %<br> \put(1316,210){\sx{6}{\rot{-56}</math>v\!=\!0</math> \ero} } %<br> \put( 330,444){\sx{6}{\rot{5}</math>v\!=\!-0.4</math> \ero} } %<br> \put( 700,10){\sx{6}{\rot{56}</math>v\!=\!-0.2</math> \ero} } %<br> \end{picture} %<br> \end{document} %<br> %Copyleft 2012 by Dmitrii Kouznetsov
The resulting PDF file is converted to PNG with 100 pixels/inch resolution.
Rwfwewnces
- ↑ http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
Keywords
Fixed point, Filog, Tania function, Tetration, Complex map
|author = Dmitrii Kouznetsov |date-created = 2012.03.08 |pub-country = Japan |notes = I tried to save it as http://en.citizendium.org/wiki/File:FilogmapT.png but it does not load as it is expected.. |versions = File:FilogmapT.png and http://tori.ils.uec.ac.jp/TORI/index.php/File:Filogbigmap100.png }}
Licensing
This media, FilogbigT.jpg, is licenced under the Creative Commons Attribution 3.0 Unported License
You are free:
To Share — To copy, distribute and transmit the work; To Remix — To adapt the work.
Under the following conditions:
Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
For any reuse or distribution, you must make clear to others the licence terms of this work (the best way to do this is with a link to this licence's web page). Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this licence impairs or restricts the author's moral rights.
Read the full licence.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 18:57, 11 March 2022 | 4,305 × 4,276 (1.53 MB) | Maintenance script (talk | contribs) | == Summary == Importing file |
You cannot overwrite this file.
File usage
The following page uses this file: