User:Dan Nessett/Sandboxes/Sandbox 2: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dan Nessett
No edit summary
imported>Dan Nessett
No edit summary
Line 1: Line 1:
<math>
\int\limits_{-1}^{1}(x^{2} -1)^{l}  dx </math>
<math>\int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l}  dx
=(-1)^{2l+1}\int\limits_{\pi}^{0}\left( \sin \theta \right) ^{2l+1}  d\theta =
\int\limits_{0}^{\pi}\left( \sin \theta \right) ^{2l+1}  d\theta, 
</math>
<math>
<math>
x=\cos \theta\; \Longrightarrow\; dx=-\sin \theta d\theta\quad\hbox{and}\quad 1-x^{2} =(\sin \theta)^2 \Longrightarrow\; x^{2}-1 =\ -(\sin \theta)^2.  
x=\cos \theta\; \Longrightarrow\; dx=-\sin \theta d\theta\quad\hbox{and}\quad 1-x^{2} =(\sin \theta)^2 \Longrightarrow\; x^{2}-1 =\ -(\sin \theta)^2.  
Line 23: Line 15:
<math>\int\limits_{0}^{\pi }\sin ^{n} \theta  d\theta  =\frac{\left(
<math>\int\limits_{0}^{\pi }\sin ^{n} \theta  d\theta  =\frac{\left(
n-1\right) }{n} \int\limits_{0}^{\pi }\sin ^{n-2} \theta  d\theta   
n-1\right) }{n} \int\limits_{0}^{\pi }\sin ^{n-2} \theta  d\theta   
</math>
<math>
\int\limits_{-1}^{1}(x^{2} -1)^{l}  dx \ =\ (-1)^{l+1}\int\limits_{0}^{\pi}\left( \sin \theta \right) ^{2l+1}  d\theta\ =\ (-1)^{l+1} \frac{2l}{2l+1}(-1)^{l+1}\int\limits_{0}^{\pi}\left( \sin \theta \right) ^{2l-1}  d\theta\ =\ -\ \frac{2l}{2l+1} \int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l-1}  dx
</math>
</math>

Revision as of 10:33, 8 September 2009