User:Dan Nessett/Sandboxes/Sandbox 2: Difference between revisions
Jump to navigation
Jump to search
imported>Dan Nessett No edit summary |
imported>Dan Nessett No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
x=\cos \theta\; \Longrightarrow\; dx=-\sin \theta d\theta\quad\hbox{and}\quad 1-x^{2} =(\sin \theta)^2 \Longrightarrow\; x^{2}-1 =\ -(\sin \theta)^2. | x=\cos \theta\; \Longrightarrow\; dx=-\sin \theta d\theta\quad\hbox{and}\quad 1-x^{2} =(\sin \theta)^2 \Longrightarrow\; x^{2}-1 =\ -(\sin \theta)^2. | ||
Line 23: | Line 15: | ||
<math>\int\limits_{0}^{\pi }\sin ^{n} \theta d\theta =\frac{\left( | <math>\int\limits_{0}^{\pi }\sin ^{n} \theta d\theta =\frac{\left( | ||
n-1\right) }{n} \int\limits_{0}^{\pi }\sin ^{n-2} \theta d\theta | n-1\right) }{n} \int\limits_{0}^{\pi }\sin ^{n-2} \theta d\theta | ||
</math> | |||
<math> | |||
\int\limits_{-1}^{1}(x^{2} -1)^{l} dx \ =\ (-1)^{l+1}\int\limits_{0}^{\pi}\left( \sin \theta \right) ^{2l+1} d\theta\ =\ (-1)^{l+1} \frac{2l}{2l+1}(-1)^{l+1}\int\limits_{0}^{\pi}\left( \sin \theta \right) ^{2l-1} d\theta\ =\ -\ \frac{2l}{2l+1} \int\limits_{-1}^{1}\left( x^{2} -1\right) ^{l-1} dx | |||
</math> | </math> |
Revision as of 10:33, 8 September 2009