imported>Paul Wormer |
imported>Paul Wormer |
Line 1: |
Line 1: |
| {{subpages}} | | {{subpages}} |
| In [[analytic geometry]], a '''reflection''' is a linear operation σ on <font style="vertical-align: top"><math>\mathbb{R}^3</math></font> with σ<sup>2</sup> = E, the identity map. This property of σ is called ''involution''. An involutory operator is non-singular and σ<sup>−1</sup> = σ. Reflecting twice an arbitrary vector brings back the original vector : | | In [[Euclidean geometry]], a '''reflection''' is a linear operation σ on <font style="vertical-align: top"><math>\mathbb{R}^3</math></font> with σ<sup>2</sup> = E, the identity map. This property of σ is called ''involution''. An involutory operator is non-singular and σ<sup>−1</sup> = σ. Reflecting twice an arbitrary vector brings back the original vector : |
| :<math> | | :<math> |
| \sigma( \vec{\mathbf{r}}\,) = \vec{\mathbf{r}}\,' \quad\hbox{and}\quad \sigma( \vec{\mathbf{r}}\,'\,) = \vec{\mathbf{r}}. | | \sigma( \vec{\mathbf{r}}\,) = \vec{\mathbf{r}}\,' \quad\hbox{and}\quad \sigma( \vec{\mathbf{r}}\,'\,) = \vec{\mathbf{r}}. |
In Euclidean geometry, a reflection is a linear operation σ on
with σ2 = E, the identity map. This property of σ is called involution. An involutory operator is non-singular and σ−1 = σ. Reflecting twice an arbitrary vector brings back the original vector :
![{\displaystyle \sigma ({\vec {\mathbf {r} }}\,)={\vec {\mathbf {r} }}\,'\quad {\hbox{and}}\quad \sigma ({\vec {\mathbf {r} }}\,'\,)={\vec {\mathbf {r} }}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/846ff71c752de306258af43f191a0a07e853f54b)
The operation σ is an isometry of
onto itself, which means that it preserves inner products and that its inverse is equal to its adjoint,
![{\displaystyle \sigma ^{\mathrm {T} }=\sigma ^{-1}\;(=\sigma ).\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4bd5b615c763f595571eaf8275d45de918e45e96)
Hence reflection is also symmetric: σT = σ. From (det(σ))2 = det(E) = 1 follows that isometries have determinant ±1. Those with positive determinant are rotations, while reflections have determinant −1. Because σ is symmetric it has real eigenvalues; since the extension of an isometry to a complex space is unitary, its (complex) eigenvalues have modulus 1. It follows that the eigenvalues of σ are ±1. The product of the eigenvalues being its determinant, −1, the sets of eigenvalues of σ are either {1, 1, −1}, or {−1, −1, −1}. An operator with the latter set of eigenvalues is equal to −E, minus the identity operator. This operator is known alternatively as inversion, reflection in a point, or parity operator. An operator with the former set of eigenvalues is reflection in a plane. Reflections in a plane are the subject of this article.
Sometimes one finds the concept of "reflections in a line", these are rotations over 180°, see rotation matrix.
PD Image Fig. 1. The vector
![{\displaystyle \scriptstyle {\vec {\mathbf {r} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1081b6f98d85b395dc1ce8d31f5c0494f8e866d6)
goes to
![{\displaystyle \scriptstyle {\vec {\mathbf {r} }}'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec44a710cf5c21fabedbf21b5146f63bf5f9dfa)
under reflection in a plane. The unit vector
![{\displaystyle \scriptstyle {\hat {\mathbf {n} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aa11b2fb8c169393d659f329e4d39aa0aabf0204)
is normal to mirror plane.
Reflection in a plane
If
is a unit vector normal (perpendicular) to a plane—the mirror plane—then
is the projection of
on this unit vector. From the figure it is evident that
![{\displaystyle {\vec {\mathbf {r} }}-{\vec {\mathbf {r} }}\,'=2({\hat {\mathbf {n} }}\cdot {\vec {\mathbf {r} }})\,{\hat {\mathbf {n} }}\;\Longrightarrow \;{\vec {\mathbf {r} }}\,'={\vec {\mathbf {r} }}-2({\hat {\mathbf {n} }}\cdot {\vec {\mathbf {r} }}){\hat {\mathbf {n} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d4ca5fdd3fc20f5353b7715c8f2780ed14016c0)
If a non-unit normal
is used then substitution of
![{\displaystyle {\hat {\mathbf {n} }}={\frac {\vec {\mathbf {n} }}{|{\vec {\mathbf {n} }}|}}\equiv {\frac {\vec {\mathbf {n} }}{n}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/989c78609ff7f3d4890e1012abe93bf46749f9f9)
gives the mirror image,
![{\displaystyle {\vec {\mathbf {r} }}\,'={\vec {\mathbf {r} }}-2{\frac {({\vec {\mathbf {n} }}\cdot {\vec {\mathbf {r} }}){\vec {\mathbf {n} }}}{n^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fdbfb5e3177f2f114124205f24f6c55653875e71)
Sometimes it is convenient to write this as a matrix equation. Introducing the dyadic product, we obtain
![{\displaystyle {\vec {\mathbf {r} }}\,'=\left[\mathbf {E} -{\frac {2}{n^{2}}}{\vec {\mathbf {n} }}\otimes {\vec {\mathbf {n} }}\right]\;{\vec {\mathbf {r} }},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb112d732fbaf7c81a05f819922f6b4d713dc646)
where E is the 3×3 identity matrix.
Dyadic products satisfy the matrix multiplication rule
![{\displaystyle [{\vec {\mathbf {a} }}\otimes {\vec {\mathbf {b} }}]\,[{\vec {\mathbf {c} }}\otimes {\vec {\mathbf {d} }}]=({\vec {\mathbf {b} }}\cdot {\vec {\mathbf {c} }}){\big (}{\vec {\mathbf {a} }}\otimes {\vec {\mathbf {d} }}{\big )}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/037a6b38897a0d8a8d7787a0ea60a4e18d091281)
By the use of this rule it is easily shown that
![{\displaystyle \left[\mathbf {E} -{\frac {2}{n^{2}}}{\vec {\mathbf {n} }}\otimes {\vec {\mathbf {n} }}\right]^{2}=\mathbf {E} ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cd65ff7a8f5970ebba0e77e1a5680c6192a28266)
which confirms that reflection is involutory.
PD Image Fig. 2. The vector
![{\displaystyle {\vec {\mathbf {s} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3726dd15e74f581d5f871adb0eb83301de42080a)
goes to
![{\displaystyle {\vec {\mathbf {s} }}\,'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/737602cd24f139d08097fb32eea77ff8ad6efaca)
under reflection
Reflection in a plane not through the origin
In Figure 2 a plane, not containing the origin O, is considered that is orthogonal to the vector
. The length of this vector is the distance from O to the plane.
From Figure 2, we find
![{\displaystyle {\vec {\mathbf {r} }}={\vec {\mathbf {s} }}-{\vec {\mathbf {t} }},\quad {\vec {\mathbf {r} }}\,'={\vec {\mathbf {s} }}\,'-{\vec {\mathbf {t} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da273dd41aa59c628c87703f93d6ee3df00ee277)
Use of the equation derived earlier gives
![{\displaystyle {\vec {\mathbf {s} }}\,'-{\vec {\mathbf {t} }}={\vec {\mathbf {s} }}-{\vec {\mathbf {t} }}-2{\big (}{\hat {\mathbf {n} }}\cdot ({\vec {\mathbf {s} }}-{\vec {\mathbf {t} }}){\big )}{\hat {\mathbf {n} }}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f760c39de5c2bf99f12559bd583e0e711991b16d)
And hence the equation for the reflected pair of vectors is,
![{\displaystyle {\vec {\mathbf {s} }}\,'={\vec {\mathbf {s} }}-2{\big (}{\hat {\mathbf {n} }}\cdot ({\vec {\mathbf {s} }}-{\vec {\mathbf {t} }}){\big )}{\hat {\mathbf {n} }},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bbdc749323035f421067d63898abdda986f8c4ed)
where
is a unit vector normal to the plane. Obviously
and
are proportional, they differ only by scaling. Therefore, the equation can be written solely in terms of
,
![{\displaystyle {\vec {\mathbf {s} }}\,'={\vec {\mathbf {s} }}-2{\frac {{\vec {\mathbf {t} }}\cdot ({\vec {\mathbf {s} }}-{\vec {\mathbf {t} }})}{t^{2}}}{\vec {\mathbf {t} }},\quad t^{2}\equiv {\vec {\mathbf {t} }}\cdot {\vec {\mathbf {t} }}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/59351817808432368923af22d3e287b24f1589e9)
Two consecutive reflections
PD Image Fig. 3. Two reflections. Left drawing: 3-dimensional drawing. Right drawing: view along the PQ axis, drawing projected on the plane through ABC. This plane intersect the line PQ in the point P′
Two consecutive reflections in two intersecting planes give a rotation around the line of intersection. This is shown in Figure 3, where PQ is the line of intersection.
The drawing on the left shows that reflection of point A in the plane through PMQ brings the point A to B. A consecutive reflection in the plane through PNQ brings B to the final position C. In the right-hand drawing it is shown that the rotation angle φ is equal to twice the angle between the mirror planes. Indeed, the angle ∠ AP'M = ∠ MP'B = α and ∠ BP'N = ∠ NP'C = β. The rotation angle ∠ AP'C ≡ φ = 2α + 2β and the angle between the planes is α+β = φ/2.
It is obvious that the product of two reflections is a rotation. Indeed, a reflection is an isometry and has determinant −1. The product of two isometric operators is again an isometry and the rule for determinants is det(AB) = det(A)det(B), so that the product of two reflections is an isometry with unit determinant, i.e., a rotation.
Let the normal of the first plane be
and of the second
, then the rotation is represented by the matrix
![{\displaystyle \left[\mathbf {E} -{\frac {2}{t^{2}}}{\vec {\mathbf {t} }}\otimes {\vec {\mathbf {t} }}\right]\,\left[\mathbf {E} -{\frac {2}{s^{2}}}{\vec {\mathbf {s} }}\otimes {\vec {\mathbf {s} }}\right]=\mathbf {E} -{\frac {2}{t^{2}}}{\vec {\mathbf {t} }}\otimes {\vec {\mathbf {t} }}-{\frac {2}{s^{2}}}{\vec {\mathbf {s} }}\otimes {\vec {\mathbf {s} }}+{\frac {4}{t^{2}s^{2}}}({\vec {\mathbf {t} }}\cdot {\vec {\mathbf {s} }})\;{\big (}{\vec {\mathbf {t} }}\otimes {\vec {\mathbf {s} }}{\big )}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/454d07547f582382357684b9dc6463f3ff0ecbbc)
The (i,j) element if this matrix is equal to
![{\displaystyle \delta _{ij}-{\frac {2t_{i}t_{j}}{t^{2}}}-{\frac {2s_{i}s_{j}}{s^{2}}}+{\frac {4t_{i}s_{j}(\sum _{k}t_{k}s_{k})}{t^{2}s^{2}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6668d517e12987b7f2dffa5caebf2336f26985a)
This formula is used in vector rotation.