Ideal gas law/Tutorials: Difference between revisions
imported>Milton Beychok m (Corrected 298.15 to 293.15 in Problem 2. Revised last equation in Problem 5 for better clarity.) |
imported>Daniel Mietchen |
||
Line 11: | Line 11: | ||
<!--* 1 bar = 0.98692 atm --> | <!--* 1 bar = 0.98692 atm --> | ||
== Example problems == | == Example problems == | ||
''See also the tutorials on the [[Ideal gas law/Video|Video subpage]].'' | |||
===Problem 1=== | ===Problem 1=== | ||
Determine the volume of 1 mol of ideal gas at pressure 1 atm and temperature 20 °C. | Determine the volume of 1 mol of ideal gas at pressure 1 atm and temperature 20 °C. | ||
Line 19: | Line 20: | ||
{\mathrm{atm}} \right] | {\mathrm{atm}} \right] | ||
= 24.0550 \quad [\mathrm{L}] | = 24.0550 \quad [\mathrm{L}] | ||
</math> | |||
===Problem 2=== | ===Problem 2=== | ||
Compute from Charles' and Gay-Lussac's law (''V''/''T'' is constant) the volume of an ideal gas at 1 atm and 0 °C (Use the final result of the previous problem). Write ''V''<sub>''T''</sub> for the volume at ''T'' °C, then | Compute from Charles' and Gay-Lussac's law (''V''/''T'' is constant) the volume of an ideal gas at 1 atm and 0 °C (Use the final result of the previous problem). Write ''V''<sub>''T''</sub> for the volume at ''T'' °C, then | ||
Line 53: | Line 54: | ||
It is given that the initial and final temperature are equal, <math>T_\mathrm{i} = T_\mathrm{f}\, </math>, therefore the products ''RT'' on both sides of the equation cancel, and Eq. (1.4) reduces to Eq. (1.1). | It is given that the initial and final temperature are equal, <math>T_\mathrm{i} = T_\mathrm{f}\, </math>, therefore the products ''RT'' on both sides of the equation cancel, and Eq. (1.4) reduces to Eq. (1.1). | ||
===Problem 4=== | ===Problem 4=== | ||
Line 63: | Line 63: | ||
\frac{\mathrm{atm}\cdot \mathrm{L}}{\frac{\mathrm{atm} \cdot \mathrm{L}}{\mathrm{K}\cdot \mathrm{mol}}\cdot\mathrm{K}} \right] | \frac{\mathrm{atm}\cdot \mathrm{L}}{\frac{\mathrm{atm} \cdot \mathrm{L}}{\mathrm{K}\cdot \mathrm{mol}}\cdot\mathrm{K}} \right] | ||
=\frac{500}{0.0821 \cdot 298}\quad\left[ \frac{\mathrm{mol} \cdot \mathrm{atm}\cdot \mathrm{L}}{\mathrm{atm}\cdot \mathrm{L}} \right] = 20.4 \quad [\mathrm{mol}] | =\frac{500}{0.0821 \cdot 298}\quad\left[ \frac{\mathrm{mol} \cdot \mathrm{atm}\cdot \mathrm{L}}{\mathrm{atm}\cdot \mathrm{L}} \right] = 20.4 \quad [\mathrm{mol}] | ||
</math> | |||
===Problem 5=== | ===Problem 5=== | ||
Given is that dry air consists of 78.1% N<sub>2</sub>, 20.1% O<sub>2</sub>, and 0.8% Ar (volume percentages). The [[Atomic_mass#Standard_Atomic_Weights_of_the_Elements|atomic weights]] of N, O, and Ar are 14.0, 16.0 and 39.9, respectively. Compute the mass of 1 m<sup>3</sup> of dry air at 1 atm and 20 °C. | Given is that dry air consists of 78.1% N<sub>2</sub>, 20.1% O<sub>2</sub>, and 0.8% Ar (volume percentages). The [[Atomic_mass#Standard_Atomic_Weights_of_the_Elements|atomic weights]] of N, O, and Ar are 14.0, 16.0 and 39.9, respectively. Compute the mass of 1 m<sup>3</sup> of dry air at 1 atm and 20 °C. | ||
=====Answer===== | =====Answer===== | ||
Since for ideal gases the volume ''V'' is proportional to the number of moles ''n'', a volume percentage is equal to a molar percentage. For instance, for a mixture of two gases, it is easily shown that | Since for ideal gases the volume ''V'' is proportional to the number of moles ''n'', a volume percentage is equal to a molar percentage. For instance, for a mixture of two gases, it is easily shown that | ||
Line 82: | Line 83: | ||
Hence the mass of 1 cubic meter of dry air is | Hence the mass of 1 cubic meter of dry air is | ||
:M = 28.6192 × 41.5714 = 1189.7 g = 1.1897 kg | :M = 28.6192 × 41.5714 = 1189.7 g = 1.1897 kg | ||
=== |
Revision as of 11:39, 16 January 2009
- All gases mentioned below are assumed to be ideal, i.e. their p, V, T dependence is given by the ideal gas law.
- Absolute temperature is given by K = °C + 273.15.
- All pressures are absolute.
- The molar gas constant R = 0.082057 atm·L/(K·mol).
Example problems
See also the tutorials on the Video subpage.
Problem 1
Determine the volume of 1 mol of ideal gas at pressure 1 atm and temperature 20 °C.
Problem 2
Compute from Charles' and Gay-Lussac's law (V/T is constant) the volume of an ideal gas at 1 atm and 0 °C (Use the final result of the previous problem). Write VT for the volume at T °C, then
Problem 3
A certain amount of gas that has an initial pressure of 1 atm and an initial volume of 2 L, is compressed to a final pressure of 5 atm at constant temperature. What is the final volume of the gas?
Boyle's law (pV is constant)
or
Inserting the given numbers
Ideal gas law
The number n of moles is constant
It is given that the initial and final temperature are equal, , therefore the products RT on both sides of the equation cancel, and Eq. (1.4) reduces to Eq. (1.1).
Problem 4
How many moles of nitrogen are present in a 50 L tank at 25 °C when the pressure is 10 atm? Numbers include only 3 significant figures.
Problem 5
Given is that dry air consists of 78.1% N2, 20.1% O2, and 0.8% Ar (volume percentages). The atomic weights of N, O, and Ar are 14.0, 16.0 and 39.9, respectively. Compute the mass of 1 m3 of dry air at 1 atm and 20 °C.
Answer
Since for ideal gases the volume V is proportional to the number of moles n, a volume percentage is equal to a molar percentage. For instance, for a mixture of two gases, it is easily shown that
which states that the molar percentage of gas 1 is equal to the volume percentage of gas 1.
The mass of 1 mole of dry air is
- M = 0.781×28.0 + 0.201×32.0 + 0.008×39.9 g = 28.6192 g
In problem 1 it is found that the volume of 1 mole of ideal gas at 1 atm and 20 °C is 24.0550 L = 24.0550×10−3 m3, or
- 1 m3 contains 1/(24.0550×10−3) = 41.5714 mol
Hence the mass of 1 cubic meter of dry air is
- M = 28.6192 × 41.5714 = 1189.7 g = 1.1897 kg