Bacillus anthracis: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Kahtan M Alsaedi
imported>Kahtan M Alsaedi
Line 24: Line 24:
'''Life cycle of Bacillus anthracis'''
'''Life cycle of Bacillus anthracis'''


Exposure to harsh conditions such as the death and decompositon of a host results in the anthrax bacteria forming spores.  The process of spore formation is dependent on oxygen and thus does not occur in intact corpse.  Once spores are formed they are highly resistant to drought, heat, cold, disinfectant, and other unfavorable surroundings.  The high restivity of spores is due to hardy, thick-walled, oval bodies that have an average diameter of about 1-3 microns.  Its these characteristics that allow spores to lie dormant in natural envirnoments for hundreds of years.  Once the spores are taken up by an animal they then transform back into rod-shaped bacteria.  The bacteria then begin to mutiply and spread through the creature's body.  Overtime huge population of germs develop and produce toxin, thus resulting in the host's death, and refomation into spores.
Exposure to harsh conditions such as the death and decompositon of a host results in the anthrax bacteria forming spores.  The process of spore formation is dependent on oxygen and thus does not occur in intact corpse.  Once spores are formed they are highly resistant to drought, heat, cold, disinfectant, and other unfavorable surroundings.  The high restivity of spores is due to hardy, thick-walled, oval bodies that have an average diameter of about 1-3 microns.  Its these characteristics that allow spores to lie dormant in natural envirnoments for hundreds of years.  The life cycle continues Once the spores are taken up by an animal which then allows them to transform back into rod-shaped bacteria.  The bacteria then begin to mutiply and spread through the creature's body.  Overtime huge population of germs develop and produce toxin, thus resulting in the host's death, and refomation into spores.


==Genome structure==
==Genome structure==

Revision as of 15:36, 28 March 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Attention niels epting.png
Attention niels epting.png
This article is currently being developed as part of an Eduzendium student project. If you are not involved with this project, please refrain from collaboratively developing it until this notice is removed.
Articles that lack this notice, including many Eduzendium ones, welcome your collaboration!


Classification

Tosco Refinery.jpg

Higher order taxa

Domain; Phylum; Class; Order; family [Others may be used. Use Tree of Life link to find]

Species

Genus speciesExample.jpg

Description and significance

Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.


Responsible for causing anthrax, Bacillus anthracis is a large, rod shaped bacterium. Under ideal conditions, Bacillus anthracis organisms are surrounded by a gel-like covering called a capsule. Its this coating that protects it from the immune systems of a host animal. Anthrax organisms usually range in size from about 1 to 1.5 microns in width and about 3 to 10 microns in length.

Life cycle of Bacillus anthracis

Exposure to harsh conditions such as the death and decompositon of a host results in the anthrax bacteria forming spores. The process of spore formation is dependent on oxygen and thus does not occur in intact corpse. Once spores are formed they are highly resistant to drought, heat, cold, disinfectant, and other unfavorable surroundings. The high restivity of spores is due to hardy, thick-walled, oval bodies that have an average diameter of about 1-3 microns. Its these characteristics that allow spores to lie dormant in natural envirnoments for hundreds of years. The life cycle continues Once the spores are taken up by an animal which then allows them to transform back into rod-shaped bacteria. The bacteria then begin to mutiply and spread through the creature's body. Overtime huge population of germs develop and produce toxin, thus resulting in the host's death, and refomation into spores.

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

Cell structure and metabolism

Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.


Nearly all warm-blooded animals are vulnerable to anthrax. Some of anthrax victims are herbivores especially grazing animals such as cattle and sheep. Anthrax is also seen in demosticated animals such as horses, mules, goats and camels. Anthrax is not limited to just domesticated animals, its also seen in wild animals. On the other hand colded animals are not affected by anthrax at all. The reason for this is because Bacillus anthracis bacteria grows best at temperatures ranging from 77F to 104F. Animals whose body temperature does not fall with in the range will be immune to anthrax. A good example of an animal whose body temperature is above the permissible range for Bacillus anthracis and is thus immune to anthrax is a bird.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.