Evolutionary biology: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Pierre-Alain Gouanvic
(Put a version of the Dobzhansky reference that contains a link to the full text and was made using Diberri's tool)
imported>Anthony.Sebastian
Line 14: Line 14:
''       See: [[Evolution]], [[Natural selection]]
''       See: [[Evolution]], [[Natural selection]]


Typically the characteristics of populations of kindred organisms (viz., species) differ one generation from another, the transgenerational changes occurring sometimes slowly, sometimes rapidly.  Those transgenerational changes constitute the evolution of the population, a descent with modification, as Charles Darwin referred to it, <ref name=darwin1859>Darwin C (1982; originally 1859) ''The Origin of Species By Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life.'' London: Penguin Books ISBN 9780140432053</ref> often accompanied by diversification into separate distinctive populations.  In a distinctive population of living systems, like a population speaking a distinctive language, members of the population vary to some extent in their characteristics, and the characteristics of one generation show similarity with those of the previous generation &mdash; those are the principles of variation and inheritance of characteristics.  As the generations proceed, the proportions of members with differing variations in characteristics may change &mdash; Darwin's descent with modification &mdash; which can lead to separate populations arising from a common ancestral population.  For example, the approximately one dozen and a half extant distinctive populations (species) of penguins descended, with modification, from a common ancestor population, that also incidentally gave rise to storks, the ancestral population living approximately 60 million years ago. <ref>Shepherd LD, Lambert DM. (2005) [http://dx.doi.org/10.1093/molbev/msj124 Mutational bias in penguin microsatellite DNA.] ''J. Hered.'' 96:566-571. PMID 15994417</ref>  For another example, chimpanzees and humans descended with modifications from a common ancestral population living some five to seven million years ago.     
Typically the characteristics of populations of kindred organisms (viz., species) differ one generation from another, the transgenerational changes occurring sometimes slowly, sometimes rapidly.  Those transgenerational changes constitute the evolution of the population, a descent with modification, as Charles Darwin referred to it, <ref name=darwin1859>Darwin C (1982; originally 1859) ''The Origin of Species By Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life.'' London: Penguin Books ISBN 9780140432053</ref> often accompanied by diversification into separate distinctive populations.  In a distinctive population of living systems, similat to a population speaking a distinctive language, individual members of the population vary to some extent in their characteristics, and the characteristics of one generation show similarity with those of the previous generation &mdash; those are the principles of variation and inheritance of characteristics.  As the generations proceed, the proportions of members with differing variations in characteristics may change &mdash; Darwin's descent with modification &mdash; which can lead to separate populations arising from a common ancestral population.  For example, the approximately one dozen and a half extant distinctive populations (species) of penguins descended, with modification, from a common ancestor population, that also incidentally gave rise to storks, the ancestral population living approximately 60 million years ago. <ref>Shepherd LD, Lambert DM. (2005) [http://dx.doi.org/10.1093/molbev/msj124 Mutational bias in penguin microsatellite DNA.] ''J. Hered.'' 96:566-571. PMID 15994417</ref>  For another example, chimpanzees and humans descended with modifications from a common ancestral population living some five to seven million years ago.     


Among other factors, so-called 'mutations' in the determinants of heritable characteristics (e.g., genes) cause the variation, and natural processes of sorting among the variants, based in part on the  'fitness' of the variants in respect of reproductive success, as in natural selection, cause the changing proportions of different variants in successive generations.  The sorting process of natural selection results in the adaptation of the population to changing environmental conditions affecting reproductive fitness.<ref>[http://evolution.berkeley.edu/evolibrary/article/0_0_0/evo_25 The basics of how natural selection works to produce adaptations]</ref>
Among other factors, so-called 'mutations' in the determinants of heritable characteristics (e.g., genes) cause the variation, and natural processes of sorting among the variants, based in part on the  'fitness' of the variants in respect of reproductive success, as in natural selection, cause the changing proportions of different variants in successive generations.  The sorting process of natural selection results in the adaptation of the population to changing environmental conditions affecting reproductive fitness.<ref>[http://evolution.berkeley.edu/evolibrary/article/0_0_0/evo_25 The basics of how natural selection works to produce adaptations]</ref>

Revision as of 12:30, 28 May 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
 
This editable Main Article is under development and subject to a disclaimer.


The scientific discipline of biology has numerous sub-disciplines, including that of evolutionary biology. As a sub-discipline of biology, however, evolutionary biology practically subsumes biology, as many if not most biologists endorse the proposition of the 20th century's pioneering evolutionary biologist, Theodosius Dobzhansky, videlicet: "Nothing in biology makes sense except in the light of evolution."[1]  For evolutionary biologists, not surprisingly, evolution takes center stage, in particular as "the unifying theory of biology".[2][3]

Evolutionary biology concerns itself centrally with the history of evolution — the changes in function and structure in populations of organisms through geological time — and with the mechanisms, or causes, of evolution — the processes operating that effect those evolutionary changes. In pursuing those concerns, evolutionary biology informs us about ourselves and the living world that embeds us, rewards us with satisfactions to our instinctual curiosities, and, as will become evident, contributes critically to the research efforts of biologists in almost every discipline, from molecular and cell biology, genetics, physiology, medicine, mathematical biology, agriculture, ecology, environmental conservation, and the philosophy of biology — to name a few.

This article endeavors to provide an overview of the concepts, principles and applications of evolutionary biology; the questions it tries to answer; the questions that arise from those answers; how it has changed and continues to change our worldview; and, how the discipline itself continues to evolve.

Evolution in brief

       See: Evolution, Natural selection

Typically the characteristics of populations of kindred organisms (viz., species) differ one generation from another, the transgenerational changes occurring sometimes slowly, sometimes rapidly. Those transgenerational changes constitute the evolution of the population, a descent with modification, as Charles Darwin referred to it, [4] often accompanied by diversification into separate distinctive populations. In a distinctive population of living systems, similat to a population speaking a distinctive language, individual members of the population vary to some extent in their characteristics, and the characteristics of one generation show similarity with those of the previous generation — those are the principles of variation and inheritance of characteristics. As the generations proceed, the proportions of members with differing variations in characteristics may change — Darwin's descent with modification — which can lead to separate populations arising from a common ancestral population. For example, the approximately one dozen and a half extant distinctive populations (species) of penguins descended, with modification, from a common ancestor population, that also incidentally gave rise to storks, the ancestral population living approximately 60 million years ago. [5] For another example, chimpanzees and humans descended with modifications from a common ancestral population living some five to seven million years ago.

Among other factors, so-called 'mutations' in the determinants of heritable characteristics (e.g., genes) cause the variation, and natural processes of sorting among the variants, based in part on the 'fitness' of the variants in respect of reproductive success, as in natural selection, cause the changing proportions of different variants in successive generations. The sorting process of natural selection results in the adaptation of the population to changing environmental conditions affecting reproductive fitness.[6]

Additional specifics of evolutionary processes will emerge in context in the discussion of topics to follow. The undisputed primer: Charles Darwin's, On the Origin of Species. [4] An informative website primer: [7]

Examples of questions asked by evolutionary biologists

In the first chapter of his 1998 book on evolutionary biology, Douglas Futuyma extols evolutionary biology as the "most sweeping and comprehensive" of all of the biological sciences.[2] By way of justification, he illustrates the kinds of questions asked by evolutionary biologists. Many echo questions asked some thirty years earlier by Theodosius Dobzhansky.[1]

  • Why so many different kinds of organisms living today?
  • Why do they share some common characteristics but differ in others?
  • Why do the countless different species of organisms have the particular features they have?
  • Why do almost all species of organisms have the same genetic code for specifying protein structures?
  • Why the difference in life spans among species?
  • Why do they differ in what they can learn?
  • Why chromosomal crossing over?
  • What brought about the immense variety of enzymes in cells?
  • Why do men have nipples?
  • Why does swallowing risk choking in humans?
  • Why the particular geographic distribution of species on Earth?
  • How did human cognition arise?
  • How did humans become bipedal?
  • Why did humans become nearly hairless?

One might add many other questions asked by evolutionary biologists not specifically addressed by Professor Futuyma in Chapter One:

  • Why do humans develop chronic degenerative diseases?
  • Why do we have an obesity epidemic?
  • Why sexual reproduction?
  • Why a limited rather than indefinite life span?
  • Why autoimmune diseases?
  • Why breast cancer?
  • Why mental illnesses?
  • Why do we have the particular instincts we have?
  • Why murder, war?
  • Why do living things exist at all?
  • How does novelty arise in living things?

All of the above questions give some sense of the sweep and importance of evolutionary biology.


References

Citations and notes

  1. 1.0 1.1 Dobzhansky T (1973). "Nothing in biology makes sense except in the light of evolution". Am Biol Teach: 125-9.
  2. 2.0 2.1 Futuyma DJ. (1998) Evolutionary Biology. Sinauer Associates, Inc. Sunderland. ISBN 0-87893-189-9
  3. Introduction to Evolutionary Biology
  4. 4.0 4.1 Darwin C (1982; originally 1859) The Origin of Species By Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. London: Penguin Books ISBN 9780140432053
  5. Shepherd LD, Lambert DM. (2005) Mutational bias in penguin microsatellite DNA. J. Hered. 96:566-571. PMID 15994417
  6. The basics of how natural selection works to produce adaptations
  7. Understanding Evolution