The Wigner D-matrix is a matrix in an irreducible representation of the groups SU(2) and SO(3). The complex conjugate of the D-matrix with integral indices is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors.
Definition Wigner D-matrix
Let
,
,
be generators of the Lie algebra of SU(2) and SO(3). In quantum mechanics these
three operators are the components of a vector operator known as angular momentum. Examples
are the angular momentum of an electron
in an atom, electronic spin,and the angular momentum
of a rigid rotor. In all cases the three operators satisfy the following commutation relations,
![{\displaystyle [j_{x},j_{y}]=ij_{z},\quad [j_{z},j_{x}]=ij_{y},\quad [j_{y},j_{z}]=ij_{x},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f567d4855da056d5c833481f0c54e45e60e1105)
where i is the purely imaginary number and Planck's constant
has been put equal to one. The operator
![{\displaystyle j^{2}=j_{x}^{2}+j_{y}^{2}+j_{z}^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eb190cdd9dd8a3a4c1bc5a5f9331d41a77ea24fd)
is a Casimir operator of SU(2) (or SO(3) as the case may be).
It may be diagonalized together with
(the choice of this operator
is a conventional), which commutes with
. That is, it can be shown that there is a complete set of kets with
![{\displaystyle j^{2}|jm\rangle =j(j+1)|jm\rangle ,\quad j_{z}|jm\rangle =m|jm\rangle ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3a984d745a8c26937659223792863b3a0fa39d5)
where
and
. (For SO(3) the quantum number
is integer.)
A rotation operator can be written as
![{\displaystyle {\mathcal {R}}(\alpha ,\beta ,\gamma )=e^{-i\alpha j_{z}}e^{-i\beta j_{y}}e^{-i\gamma j_{z}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/47237ff4004760df771105421c0afd9811c6d197)
where
and
are Euler angles
(characterized by the keywords: z-y-z convention, right-handed frame, right-hand screw rule, active interpretation).
The Wigner D-matrix is a square matrix of dimension
with
general element
![{\displaystyle D_{m'm}^{j}(\alpha ,\beta ,\gamma )\ {\stackrel {\mathrm {def} }{=}}\ \langle jm'|{\mathcal {R}}(\alpha ,\beta ,\gamma )|jm\rangle =e^{-im'\alpha }d_{m'm}^{j}(\beta )e^{-im\gamma }.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/03bf57510eb1fbcad2325be211100213b44aaf84)
The matrix with general element
![{\displaystyle d_{m'm}^{j}(\beta )=\langle jm'|e^{-i\beta j_{y}}|jm\rangle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/7f95f882b40b40870713cf3aba746d34f0e89a6e)
is known as Wigner's (small) d-matrix.
Wigner (small) d-matrix
Wigner[1]
gave the following expression
![{\displaystyle {\begin{array}{lcl}d_{m'm}^{j}(\beta )&=&[(j+m')!(j-m')!(j+m)!(j-m)!]^{1/2}\sum _{s}{\frac {(-1)^{m'-m+s}}{(j+m-s)!s!(m'-m+s)!(j-m'-s)!}}\\&&\times \left(\cos {\frac {\beta }{2}}\right)^{2j+m-m'-2s}\left(\sin {\frac {\beta }{2}}\right)^{m'-m+2s}\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/37414f0b49c8b575d4c06758487b4226e9e05fdc)
The sum over s is over such values that the factorials are nonnegative.
Note: The d-matrix elements defined here are real. In the often-used z-x-z convention of Euler angles, the factor
in this fomula is replaced by
, causing half of the functions to be purely imaginary. The realness of the d-matrix elements is one of the reasons that the z-y-z convention, used in this article, is usually preferred in quantum mechanical applications.
The d-matrix elements are related to Jacobi polynomials
with nonnegative
and
. [2] Let
![{\displaystyle k=\min(j+m,\,j-m,\,j+m',\,j-m').}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da553c7e9153d866994470d4aad0a4ca5e9cf660)
![{\displaystyle {\hbox{If}}\quad k={\begin{cases}j+m:&\quad a=m'-m;\quad \lambda =m'-m\\j-m:&\quad a=m-m';\quad \lambda =0\\j+m':&\quad a=m-m';\quad \lambda =0\\j-m':&\quad a=m'-m;\quad \lambda =m'-m\\\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/89e0760671b3776283888766016d81378e401ac9)
Then, with
, the relation is
![{\displaystyle d_{m'm}^{j}(\beta )=(-1)^{\lambda }{\binom {2j-k}{k+a}}^{1/2}{\binom {k+b}{b}}^{-1/2}\left(\sin {\frac {\beta }{2}}\right)^{a}\left(\cos {\frac {\beta }{2}}\right)^{b}P_{k}^{(a,b)}(\cos \beta ),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/97fcaa411a453a298c291e1f9e0636660d18b958)
where
Properties of Wigner D-matrix
The complex conjugate of the D-matrix satisfies a number of differential properties
that can be formulated concisely by introducing the following operators with
,
![{\displaystyle {\begin{array}{lcl}{\hat {\mathcal {J}}}_{1}&=&i\left(\cos \alpha \cot \beta \,{\partial \over \partial \alpha }\,+\sin \alpha \,{\partial \over \partial \beta }\,-{\cos \alpha \over \sin \beta }\,{\partial \over \partial \gamma }\,\right)\\{\hat {\mathcal {J}}}_{2}&=&i\left(\sin \alpha \cot \beta \,{\partial \over \partial \alpha }\,-\cos \alpha \;{\partial \over \partial \beta }\,-{\sin \alpha \over \sin \beta }\,{\partial \over \partial \gamma }\,\right)\\{\hat {\mathcal {J}}}_{3}&=&-i\;{\partial \over \partial \alpha },\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/820e687fb9c9b7b353ffefcbceb74692a354efb9)
which have quantum mechanical meaning: they are space-fixed rigid rotor angular momentum operators.
Further,
![{\displaystyle {\begin{array}{lcl}{\hat {\mathcal {P}}}_{1}&=&\,i\left({\cos \gamma \over \sin \beta }{\partial \over \partial \alpha }-\sin \gamma {\partial \over \partial \beta }-\cot \beta \cos \gamma {\partial \over \partial \gamma }\right)\\{\hat {\mathcal {P}}}_{2}&=&\,i\left(-{\sin \gamma \over \sin \beta }{\partial \over \partial \alpha }-\cos \gamma {\partial \over \partial \beta }+\cot \beta \sin \gamma {\partial \over \partial \gamma }\right)\\{\hat {\mathcal {P}}}_{3}&=&-i{\partial \over \partial \gamma },\\\end{array}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9ec025124db7ff9ae111ab8af15d73b6ef7c7276)
which have quantum mechanical meaning: they are body-fixed rigid rotor angular momentum operators.
The operators satisfy the commutation relations
![{\displaystyle \left[{\mathcal {J}}_{1},\,{\mathcal {J}}_{2}\right]=i{\mathcal {J}}_{3},\qquad {\hbox{and}}\qquad \left[{\mathcal {P}}_{1},\,{\mathcal {P}}_{2}\right]=-i{\mathcal {P}}_{3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00d986047e2b66ba6077837c0231c2bba69ea11e)
and the corresponding relations with the indices permuted cyclically.
The
satisfy anomalous commutation relations
(have a minus sign on the right hand side).
The two sets mutually commute,
![{\displaystyle \left[{\mathcal {P}}_{i},\,{\mathcal {J}}_{j}\right]=0,\quad i,\,j=1,\,2,\,3,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/98334cb50f15cfab709970b0137ab8ac16c484b8)
and the total operators squared are equal,
![{\displaystyle {\mathcal {J}}^{2}\equiv {\mathcal {J}}_{1}^{2}+{\mathcal {J}}_{2}^{2}+{\mathcal {J}}_{3}^{2}={\mathcal {P}}^{2}\equiv {\mathcal {P}}_{1}^{2}+{\mathcal {P}}_{2}^{2}+{\mathcal {P}}_{3}^{2}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7eb355fcfc06aef1084f4da01564cd0833384c41)
Their explicit form is,
![{\displaystyle {\mathcal {J}}^{2}={\mathcal {P}}^{2}=-{\frac {1}{\sin ^{2}\beta }}\left({\frac {\partial ^{2}}{\partial \alpha ^{2}}}+{\frac {\partial ^{2}}{\partial \gamma ^{2}}}-2\cos \beta {\frac {\partial ^{2}}{\partial \alpha \partial \gamma }}\right)-{\frac {\partial ^{2}}{\partial \beta ^{2}}}-\cot \beta {\frac {\partial }{\partial \beta }}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b02331dfe0d639cd2e04239501c9683a6568cce)
The operators
act on the first (row) index of the D-matrix,
![{\displaystyle {\mathcal {J}}_{3}\,D_{m'm}^{j}(\alpha ,\beta ,\gamma )^{*}=m'\,D_{m'm}^{j}(\alpha ,\beta ,\gamma )^{*},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/396203fce856def279f9c043fbd7c544ab203b7f)
and
![{\displaystyle ({\mathcal {J}}_{1}\pm i{\mathcal {J}}_{2})\,D_{m'm}^{j}(\alpha ,\beta ,\gamma )^{*}={\sqrt {j(j+1)-m'(m'\pm 1)}}\,D_{m'\pm 1,m}^{j}(\alpha ,\beta ,\gamma )^{*}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/25d85e8b3dc56e72b697b799b369d87caa46fb41)
The operators
act on the second (column) index of the D-matrix
![{\displaystyle {\mathcal {P}}_{3}\,D_{m'm}^{j}(\alpha ,\beta ,\gamma )^{*}=m\,D_{m'm}^{j}(\alpha ,\beta ,\gamma )^{*},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ada694b1330a0edb15f5353ac232792df46a4ac)
and because of the anomalous commutation relation the raising/lowering operators
are defined with reversed signs,
![{\displaystyle ({\mathcal {P}}_{1}\mp i{\mathcal {P}}_{2})\,D_{m'm}^{j}(\alpha ,\beta ,\gamma )^{*}={\sqrt {j(j+1)-m(m\pm 1)}}\,D_{m',m\pm 1}^{j}(\alpha ,\beta ,\gamma )^{*}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b47f26dcae272a010322f09e8784d8b8eec088d5)
Finally,
![{\displaystyle {\mathcal {J}}^{2}\,D_{m'm}^{j}(\alpha ,\beta ,\gamma )^{*}={\mathcal {P}}^{2}\,D_{m'm}^{j}(\alpha ,\beta ,\gamma )^{*}=j(j+1)D_{m'm}^{j}(\alpha ,\beta ,\gamma )^{*}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/38d10d80123f9f34243b9d0a907659a8eabc3b06)
In other words, the rows and columns of the (complex conjugate) Wigner D-matrix span
irreducible representations of the isomorphic Lie algebra's generated by
and
.
An important property of the Wigner D-matrix follows from the commutation of
with the time reversal operator
,
![{\displaystyle \langle jm'|{\mathcal {R}}(\alpha ,\beta ,\gamma )|jm\rangle =\langle jm'|T^{\,\dagger }{\mathcal {R}}(\alpha ,\beta ,\gamma )T|jm\rangle =(-1)^{m'-m}\langle j,-m'|{\mathcal {R}}(\alpha ,\beta ,\gamma )|j,-m\rangle ^{*},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7427e90512256a633be45550fbb7505dd1365330)
or
![{\displaystyle D_{m'm}^{j}(\alpha ,\beta ,\gamma )=(-1)^{m'-m}D_{-m',-m}^{j}(\alpha ,\beta ,\gamma )^{*}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb22f2e20a44a0745ee736c152290ef45ac00164)
Here we used that
is anti-unitary (hence the complex conjugation after moving
from ket to bra),
and
.
Relation with spherical harmonic functions
The D-matrix elements with second index equal to zero, are proportional
to spherical harmonics, normalized to unity and with Condon and Shortley phase convention,
![{\displaystyle D_{m0}^{\ell }(\alpha ,\beta ,\gamma )^{*}={\sqrt {\frac {4\pi }{2\ell +1}}}Y_{\ell }^{m}(\beta ,\alpha ).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/570e70cac46f60230d2f7de76ec1d3597e8d0f7a)
In the present convention of Euler angles,
is
a longitudinal angle and
is a colatitudinal angle (spherical polar angles
in the physical definition of such angles). This is one of the reasons that the z-y-z
convention is used frequently in molecular physics.
From the time-reversal property of the Wigner D-matrix follows immediately
![{\displaystyle \left(Y_{\ell }^{m}\right)^{*}=(-1)^{m}Y_{\ell }^{-m}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8493edab34cafc712c6bce708a3cc86ffade3d00)
References
Cited references
- ↑ E. P. Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren, Vieweg Verlag, Braunschweig (1931). Translated into English: J. J. Griffin, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York (1959).
- ↑ L. C. Biedenharn and J. D. Louck,
Angular Momentum in Quantum Physics, Addison-Wesley, Reading, (1981).