File:FilogbigT.jpg: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
({{Image_Details|user |description = Complex map of function Filog. ==Semantics of Filog== $\mathrm{Filog}(z)$ expresses the fixed point of logarithm to base $b\!=\!\exp(z)$. Another fixed point to the same base can be expressed with $\mathrm{Filog}(z^*)^*$ ==Algorithm of evaluation== Filog is expressed through the Tania function: : $\displaystyle \mathrm{Filog}(z)= \frac{\mathrm{Tania}\!\big(\ln(z)-1-\mathrm{i}\big)}{-z}$ ==Representation of the function== $f=...)
 
(== Summary == Importing file)
Tag: Server-side upload
 
(5 intermediate revisions by one other user not shown)
Line 1: Line 1:
== Summary ==
== Summary ==
{{Image_Details|user
Importing file
|description  = [[Complex map]] of function [[Filog]].  ==Semantics of Filog==  $\mathrm{Filog}(z)$ expresses the [[fixed point]] of [[logarithm]] to base $b\!=\!\exp(z)$.  Another fixed point to the same base can be expressed with  $\mathrm{Filog}(z^*)^*$  ==Algorithm of evaluation== [[Filog]] is expressed through the [[Tania function]]: : $\displaystyle \mathrm{Filog}(z)= \frac{\mathrm{Tania}\!\big(\ln(z)-1-\mathrm{i}\big)}{-z}$  ==Representation of the function==  $f=\mathrm{Filog}(x+\mathrm{i} y)$ is shown in the $x,y$ plane with  levels $u=\Re(f)=\mathrm{cont}$ and  levels $v=\Im(f)=\mathrm{cont}$; thick lines correspond to the integer values.  The additional thin gridlines $x\!=\!\exp(-1)$ and $x\!=\!\pi/2$ are drawn. The first of them goes through the branchpoint $z=1/\mathrm e$, which is the branch point; the second goes through the point $z=\pi/2$, where the fixed points are $\pm \mathrm i$.  ==Properties of the function==  $\mathrm{Filog}(z)$ has two singularities at $z\!=\!0$ and at $z\!=\!\exp(-1)$; the cutline is directed to the negative part of the real axis.  Except the cutline, the function is holomorphic. At the real values of the argument $0\!<\!z\!<\!\exp(-1)$, both at the upper side of the cut and at the lower side of the cut, the function has real values; in particular, at $z=\ln\big(\sqrt{2}\big)$, there values are integer <ref name="sqrt2">  http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756. </ref>: : $\mathrm{Filog}(z+\mathrm i o)=2$ : $\mathrm{Filog}(z-\mathrm i o)=4$  Approaching the branchpoint, the jump at the cut vanishes:  : $ \displaystyle \lim_{x\rightarrow 1/\mathrm e} \mathrm{Filog}(x+\mathrm i o)= \lim_{x\rightarrow 1/\mathrm e} \mathrm{Filog}(x-\mathrm i o)= \mathrm e$  ==Generator of curves== // Files [[ado.cin]], [[conto.cin]] and [[filog.cin]] should be loaded to the working directory for the compilation of the [[C++]] code below:  #include <math.h>  #include <stdio.h>  #include <stdlib.h>  #define DB double  #define DO(x,y) for(x=0;x<y;x++)  using namespace std;  #include <complex>  typedef complex<double> z_type;  #define Re(x) x.real()  #define Im(x) x.imag()  #define I z_type(0.,1.)  #include "conto.cin"  #include "filog.cin"  main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;  int M=400,M1=M+1;  int N=401,N1=N+1;  DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.  char v[M1*N1]; // v is working array  FILE *o;o=fopen("filogbig.eps","w");ado(o,2004,2004);  fprintf(o,"1002 1002 translate\n 100 100 scale\n");  DO(m,M1) X[m]=-10.+.05*(m-.2);  DO(n,200)Y[n]=-10.+.05*n;          Y[200]=-.0001;          Y[201]= .0001;  for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.);  for(m=-10;m<11;m++){M(m,-10)L(m,10)}  for(n=-10;n<11;n++){M( -10,n)L(10,n)}  fprintf(o,".005 W 0 0 0 RGB S\n");  M(exp(-1.),-1)  L(exp(-1.), 1)  M(M_PI/2.,-1)  L(M_PI/2., 1)  fprintf(o,".003 W 0 0 0 RGB S\n");  DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}  DO(m,M1){x=X[m]; //printf("%5.2f\n",x);  DO(n,N1){y=Y[n]; z=z_type(x,y);          // c=Tania(z_type(-1.,-M_PI)+log(z))/(-z);  c=Filog(z);  p=Re(c);q=Im(c);    if(p>-15. && p<15. &&  q>-15. && q<15. ){ g[m*N1+n]=p;f[m*N1+n]=q;}        }}  fprintf(o,"1 setlinejoin 1 setlinecap\n");  p=3.;q=1;  for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".001 W 0 .6 0 RGB S\n");  for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".001 W .9 0 0 RGB S\n");  for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".001 W 0 0 .9 RGB S\n");  for(m=1;m<14;m++)  conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".004 W .9 0 0 RGB S\n");  for(m=1;m<14;m++)  conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".004 W 0 0 .9 RGB S\n");                    conto(o,f,w,v,X,Y,M,N, (0.  ),-p,p); fprintf(o,".004 W .6 0 .6 RGB S\n");  for(m=-11;m<14;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".004 W 0 0 0 RGB S\n");  fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);        system("epstopdf filogbig.eps");          system(    "open filogbig.pdf"); //for mac  //    getchar(); system("killall Preview"); // for mac  // Copyleft 2012 by Dmitrii Kouznetsov  }  ==Generator of labels==  For the compilation of the [[Latex]] source below, the curves of the [[complex map]] should be already generated and stored in file fIlog.pdf with the [[C++]] code above.  <nowiki> \documentclass[12pt]{article} %<br> \usepackage{geometry}  %<br> \paperwidth 2074pt %<br> \paperheight 2060pt %<br> \topmargin -96pt %<br> \oddsidemargin -80pt %<br> \textwidth 2090pt %<br> \textheight 2066pt %<br> \usepackage{graphicx} %<br> \usepackage{rotating} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \newcommand \rme {\mathrm{e}} %<br> \newcommand \sx {\scalebox} %<br> \begin{document} %<br> \begin{picture}(2018,2040) %<br> \put(50,40){\includegraphics{filogbig}} %<br> \put(16,2024){\sx{4.3}{$y$}} %<br> \put(16,1828){\sx{4.2}{$8$}} %<br> \put(16,1628){\sx{4.2}{$6$}} %<br> \put(16,1428){\sx{4.2}{$4$}} %<br> \put(16,1228){\sx{4.2}{$2$}} %<br> \put(16,1028){\sx{4.2}{$0$}} %<br> \put(-11,828){\sx{4}{$-2$}} %<br> \put(-11,628){\sx{4}{$-4$}} %<br> \put(-11,428){\sx{4}{$-6$}} %<br> \put(-11,228){\sx{4}{$-8$}} %<br> \put(-8,0){\sx{4}{$-10$}} %<br> \put(204,0){\sx{4}{$-8$}} %<br> \put(404,0){\sx{4}{$-6$}} %<br> \put(604,0){\sx{4}{$-4$}} %<br> \put(804,0){\sx{4}{$-2$}} %<br> \put(1046,0){\sx{4}{$0$}} %<br> \put(1246,0){\sx{4}{$2$}} %<br> \put(1446,0){\sx{4}{$4$}} %<br> \put(1646,0){\sx{4}{$6$}} %<br> \put(1846,0){\sx{4}{$8$}} %<br> \put(2036,0){\sx{4.2}{$x$}} %<br> %\put(40, 2){\sx{.8}{$1/\rme$}} %<br> %\put(108, 0){\sx{1}{$1$}} %<br> %\put(164, 2){\sx{.8}{$\pi/2$}} %<br> \put(1600,1480){\sx{6}{\rot{55}$u\!=\!0$ \ero} } %<br> \put(270,1240){\sx{6}{\rot{60}$u\!=\!0.2$ \ero} } %<br> \put(800,1070){\sx{6}{\rot{55}$u\!=\!0.4$ \ero} } %<br> \put(90,910){\sx{6}{\rot{16}$u\!=\!0$ \ero} } %<br> \put(286,470){\sx{6}{\rot{70}$u\!=\!-0.2$ \ero} } %<br> \put(1686,970){\sx{6}{\rot{-30}$u\!=\!-0.2$ \ero} } %<br> \put(1686,610){\sx{6}{\rot{26}$v\!=\!0.2$ \ero} } %<br> \put(1316,210){\sx{6}{\rot{-56}$v\!=\!0$ \ero} } %<br> \put( 330,444){\sx{6}{\rot{5}$v\!=\!-0.4$ \ero} } %<br> \put( 700,10){\sx{6}{\rot{56}$v\!=\!-0.2$ \ero} } %<br> \end{picture} %<br> \end{document}  %<br>  %Copyleft 2012 by Dmitrii Kouznetsov  </nowiki>  The resulting [[PDF]] file is converted to [[PNG]] with 100 pixels/inch resolution.  ==Rwfwewnces== <references/>
|author      = [[User:Dmitrii Kouznetsov|Dmitrii Kouznetsov]]
|date-created = 2012.03.08
|pub-country  = Japan
|notes        = I tried to save it as http://en.citizendium.org/wiki/File:FilogmapT.png
but it does not load as it is expected..
|versions    = File:FilogmapT.png  and  http://tori.ils.uec.ac.jp/TORI/index.php/File:Filogbigmap100.png
}}
== Licensing ==
{{CC|by|3.0}}

Latest revision as of 18:57, 11 March 2022

Summary

Importing file

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:57, 11 March 2022Thumbnail for version as of 18:57, 11 March 20224,305 × 4,276 (1.53 MB)Maintenance script (talk | contribs)== Summary == Importing file

The following page uses this file:

Metadata