Pauli spin matrices: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Michael Underwood
(→‎Algebraic Properties: Put \mbox{} around the words 'det', 'Tr', and 'eigenvalues')
imported>Michael Hardy
No edit summary
Line 14: Line 14:


==Algebraic Properties==
==Algebraic Properties==
<math>\sigma_x^2=\sigma_y^2=\sigma_z^2=I</math><br/>
 
For i=1,2,3:<br/>
: <math>\sigma_x^2=\sigma_y^2=\sigma_z^2=I</math><br/>
:<math>\mbox{det}(\sigma_i)=-1</math><br/>
 
:<math>\mbox{Tr}(\sigma_i)=0</math><br/>
For ''i'' = 1, 2, 3:
 
:<math>\mbox{det}(\sigma_i)=-1</math>
 
:<math>\mbox{Tr}(\sigma_i)=0</math>
 
:<math>\mbox{eigenvalues}=\pm 1</math>
:<math>\mbox{eigenvalues}=\pm 1</math>



Revision as of 20:50, 22 August 2007

The Pauli spin matrices are a set of unitary Hermitian matrices which form an orthogonal basis (along with the identity matrix) for the real Hilbert space of 2x2 Hermitian matrices and for the complex Hilbert spaces of all 2x2 matrices. They are usually denoted:

Algebraic Properties


For i = 1, 2, 3:

Commutation relations

The Pauli matrices obey the following commutation and anticommutation relations:

where is the Levi-Civita symbol, is the Kronecker delta, and I is the identity matrix.

The above two relations can be summarized as:

.